【题目】已知函数
,若在定义域内存在
,使得
成立,则称
为函数
的局部对称点.
(1)若
、
且
,证明:函数
必有局部对称点;
(2)若函数
在区间
内有局部对称点,求实数
的取值范围;
(3)若函数
在
上有局部对称点,求实数
的取值范围.
科目:高中数学 来源: 题型:
【题目】某城市的华为手机专卖店对该市市民使用华为手机的情况进行调查.在使用华为手机的用户中,随机抽取100名,按年龄(单位:岁)进行统计的频率分布直方图如图:
![]()
(1)根据频率分布直方图,分别求出样本的平均数(同一组数据用该区间的中点值作代表)和中位数的估计值(均精确到个位);
(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加华为手机宣传活动,现从这20人中,随机选取2人各赠送一部华为手机,求这2名市民年龄都在
内的人数为
,求
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,若点
在
的图像上运动,则点
在
的图象上运动
(1)求
的最小值,及相应的
值
(2)求函数
的解析式,指出其定义域
,判断并证明
在
上的单调性
(3)在函数
和
的图象上是否分别存在点
关于直线
对称,若存在,求出点
的坐标;若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,射线
和
均为笔直的公路,扇形
区域(含边界)是一蔬菜种植园,其中
、
分别在射线
和
上.经测量得,扇形
的圆心角(即
)为
、半径为1千米.为了方便菜农经营,打算在扇形
区域外修建一条公路
,分别与射线
、
交于
、
两点,并要求
与扇形弧
相切于点
.设
(单位:弧度),假设所有公路的宽度均忽略不计.
![]()
(1)试将公路
的长度表示为
的函数,并写出
的取值范围;
(2)试确定
的值,使得公路
的长度最小,并求出其最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合
均为实数集
的子集,记
.
(1)已知
,试用列举法表示
;
(2)设
,当
且
时,曲线
的焦距为
,如果
,
,设
中的所有元素之和为
,求
的值;
(3)在(2)的条件下,对于满足
,且
的任意正整数
,不等式
恒成立, 求实数
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知
是曲线
:
上的动点,将
绕点
顺时针旋转
得到
,设点
的轨迹为曲线
.以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系.
(1)求曲线
,
的极坐标方程;
(2)在极坐标系中,点
,射线
与曲线
,
分别相交于异于极点
的
两点,求
的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com