【题目】在平面直角坐标系
中,已知
是曲线
:
上的动点,将
绕点
顺时针旋转
得到
,设点
的轨迹为曲线
.以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系.
(1)求曲线
,
的极坐标方程;
(2)在极坐标系中,点
,射线
与曲线
,
分别相交于异于极点
的
两点,求
的面积.
【答案】(1)曲线
:
,曲线
:
;(2)![]()
【解析】
(1)由题意,点Q的轨迹是以(2,0)为圆心,以2为半径的圆,写出其普通方程,再结合ρ2=x2+y2,x=ρcosθ,y=ρsinθ,可得曲线C1,C2的极坐标方程;
(2)在极坐标系中,设A,B的极径分别为ρ1,ρ2,求得|AB|=|ρ1﹣ρ2|,再求出M(3,
)到射线
的距离h=
,即可求得△MAB的面积.
(1)由题意,点Q的轨迹是以(2,0)为圆心,以2为半径的圆,则曲线C2:
,
∵ρ2=x2+y2,x=ρcosθ,y=ρsinθ,∴曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=4cosθ;
(2)在极坐标系中,设A,B的极径分别为ρ1,ρ2,![]()
又
点
到射线
的距离为![]()
的面积![]()
科目:高中数学 来源: 题型:
【题目】设函数![]()
.
(1)若
求函数
的单调区间;
(2)若
试判断函数
在区间
内的极值点的个数,并说明理由;
(3)求证:对任意的正数a都存在实数t满足:对任意的
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,若在定义域内存在
,使得
成立,则称
为函数
的局部对称点.
(1)若
、
且
,证明:函数
必有局部对称点;
(2)若函数
在区间
内有局部对称点,求实数
的取值范围;
(3)若函数
在
上有局部对称点,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司有1000名员工,其中男性员工400名,采用分层抽样的方法随机抽取100名员工进行5G手机购买意向的调查,将计划在今年购买5G手机的员工称为“追光族",计划在明年及明年以后才购买5G手机的员工称为“观望者”,调查结果发现抽取的这100名员工中属于“追光族”的女性员工和男性员工各有20人.
(1)完成下列
列联表,并判断是否有95%的把握认为该公司员工属于“追光族"与“性别"有关;
属于“追光族" | 属于“观望者" | 合计 | |
女性员工 | |||
男性员工 | |||
合计 | 100 |
(2)已知被抽取的这100名员工中有10名是人事部的员工,这10名中有3名属于“追光族”.现从这10名中随机抽取3名,记被抽取的3名中属于“追光族”的人数为随机变量X,求
的分布列及数学期望.
附
,其中![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
经过点
,其倾斜角为
,以原点
为极点,以
轴非负半轴为极轴,与直角坐标系
取相同的长度单位,建立极坐标系,设曲线
的参数方程为
(
为参数),曲线
的极坐标方程为
.
(1)求曲线
的普通方程和极坐标方程;
(2)若直线
与曲线
有公共点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题一“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为
,若将军从点
处出发,河岸线所在直线方程为
,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( ).
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
是指大气中直径小于或等于2.5微米的颗粒物,也称为可吸入肺颗粒物.我国
标准采用世卫组织设定的最宽限值,即
日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某试点城市环保局从该市市区2015年全年每天的
监测数据中随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)
![]()
(1)求中位数.
(2)以这15天的
日均值来估计一年的空气质量情况,则一年(按360天计算)中平均有多少天的空气质量达到一级或二级.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com