【题目】已知四棱柱ABCD﹣A1B1C1D1的底面是边长为2的菱形,且∠BAD=
,AA1⊥平面ABCD,AA1=1,设E为CD中点 ![]()
(1)求证:D1E⊥平面BEC1
(2)点F在线段A1B1上,且AF∥平面BEC1 , 求平面ADF和平面BEC1所成锐角的余弦值.
【答案】
(1)证明:由已知该四棱柱为直四棱柱,且△BCD为等边三角,BE⊥CD
所以BE⊥平面CDD1C1,而D1E平面CDD1C1,故BE⊥D1E
因为△C1D1E的三边长分别为
,故△C1D1E为等腰直角三角形
所以D1E⊥C1E,结合D1E⊥BE知:D1E⊥平面BEC1
(2)解:取AB中点G,则由△ABD为等边三角形
知DG⊥AB,从而DG⊥DC
以DC,DG,DD1为坐标轴,建立如图所示的坐标系
此时
,
,设 ![]()
由上面的讨论知平面BEC1的法向量为 ![]()
由于AF平面BEC1,故AF∥平面BEC1 ![]()
故(λ+1,0,1)(1,0,﹣1)=(λ+1)﹣1=0λ=0,故 ![]()
设平面ADF的法向量为
, ![]()
由
知
,取
,故 ![]()
设平面ADF和平面BEC1所成锐角为θ,则 ![]()
即平面ADF和平面BEC1所成锐角的余弦值为
.
![]()
【解析】(1)推导出BE⊥D1E,D1E⊥C1E,由此能证明D1E⊥平面BEC1 . (2)取AB中点G,则由△ABD为等边三角形知DG⊥AB,从而DG⊥DC,以DC,DG,DD1为坐标轴,建立空间直角坐标系,利用向量法能求出平面ADF和平面BEC1所成锐角的余弦值.
【考点精析】解答此题的关键在于理解直线与平面垂直的判定的相关知识,掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.
科目:高中数学 来源: 题型:
【题目】已知二阶矩阵M有特征值λ=8及对应的一个特征向量
=[
],并且矩阵M对应的变换将点(﹣1,2)变换成(﹣2,4).
(1)求矩阵M;
(2)求矩阵M的另一个特征值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
为正方形,
底面
,
,过点
的平面与棱
,
,
分别交于点
,
,
(
,
,
三点均不在棱的端点处).
![]()
(Ⅰ)求证:平面
平面
;
(Ⅱ)若
平面
,求
的值;
(Ⅲ)直线
是否可能与平面
平行?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
经过
,且椭圆
的离心率为
.
(1)求椭圆
的方程;
(2)设斜率存在的直线
与椭圆
交于
两点,
为坐标原点,
,且
与圆心为
的定圆
相切.直线
:
(
)与圆
交于
两点,
.求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为
,各局比赛的结果都相互独立,第1局甲当裁判.
(1)求第4局甲当裁判的概率;
(2)X表示前4局中乙当裁判的次数,求X的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是双曲线
的右焦点,过点
作
的一条渐近线的垂线,垂足为
,线段
与
相交于点
,记点
到
的两条渐近线的距离之积为
,若
,则该双曲线的离心率是( )
A.![]()
B.2
C. 3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下四个关于圆锥曲线的命题中:
①双曲线
与椭圆
有相同的焦点;
②在平面内,设
为两个定点,
为动点,且
,其中常数
为正实数,则动点
的轨迹为椭圆;
③方程
的两根可以分别作为椭圆和双曲线的离心率;
④过双曲线
的右焦点
作直线
交双曲线于
两点,若
,则这样的直线
有且仅有3条.其中真命题的序号为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com