【题目】在平面直角坐标系xOy中,曲线C的参数方程为
,其中
为参数,在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,点P的极坐标为
,直线l的极坐标方程为
.
(1)求曲线C的普通方程与直线l的直角坐标方程;
(2)若Q是曲线C上的动点,M为线段PQ的中点,求点M到直线l的距离的最大值.
科目:高中数学 来源: 题型:
【题目】某兴趣小组测量电视塔AE的高度H(单位m),如示意图,垂直放置的标杆BC高度h=4m,仰角∠ABE=α,∠ADE=β
![]()
(1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,,请据此算出H的值
(2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d(单位m),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为125m,问d为多少时,α-β最大
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线
上的动点
到点
的距离与到直线
的距离相等.
(1)求曲线
的轨迹方程;
(2)过点
分别作射线
、
交曲线
于不同的两点
、
,且以
为直径的圆经过点
.试探究直线
是否过定点?如果是,请求出该定点;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列
的前
项和为
,且
,
.数列
的前
项和为
,满足
.
(1)求数列
的通项公式;
(2)写出一个正整数
,使得
是数列
的项;
(3)设数列
的通项公式为
,问:是否存在正整数
和
,使得
,
,
成等差数列?若存在,请求出所有符合条件的有序整数对
;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,椭圆
的短半轴长等于圆
的半径,且过
右焦点的直线与圆
相切于点
.
(1)求椭圆
的方程;
(2)若动直线
与圆
相切,且与
相交于
两点,求点
到弦
的垂直平分线距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义在
上的函数
,若同时满足:①存在闭区间
,使得任取
,都有
(
是常数);②对于
内任意
,当
时总有
,称
为“平底型”函数.
(1)判断
,
是否为“平底型”函数?说明理由;
(2)设
是(1)中的“平底型”函数,若
对一切
恒成立,求实数
的范围;
(3)若
,
是“平底型”函数,求
和
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,
是一块边长为7米的正方形铁皮,其中
是一半径为6米的扇形,已经被腐蚀不能使用,其余部分完好可利用.工人师傅想在未被腐蚀部分截下一个有边落在BC与CD上的长方形铁皮
,其中P是
上一点.设
,长方形
的面积为S平方米.
![]()
(1)求S关于
的函数解析式;
(2)设
,求S关于t的表达式以及S的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com