【题目】在平面直角坐标系xOy中,直线
与抛物线y2=4x相交于不同的A,B两点,O为坐标原点.
(1) 如果直线
过抛物线的焦点且斜率为1,求
的值;
(2)如果
,证明:直线
必过一定点,并求出该定点.
【答案】(1)8;(2)证明见解析
【解析】试题分析:(Ⅰ)根据抛物线的方程得到焦点的坐标,设出直线与抛物线的两个交点和直线方程,是直线的方程与抛物线方程联立,得到关于y的一元二次方程,根据根与系数的关系,求出弦长;
(Ⅱ)设出直线的方程,同抛物线方程联立,得到关于y的一元二次方程,根据根与系数的关系表示出数量积,根据数量积等于﹣4,做出数量积表示式中的b的值,即得到定点的坐标.
试题解析:
(1)解,
, ![]()
(2)证明 由题意:抛物线焦点为(1,0),设l:x=ty+b,代入抛物线y2=4x,
消去x得y2-4ty-4b=0,设A(x1,y1),B(x2,y2),则y1+y2=4t,y1y2=-4b,
∴
·
=x1x2+y1y2=(ty1+b)(ty2+b)+y1y2 =t2y1y2+bt(y1+y2)+b2+y1y2
=-4bt2+4bt2+b2-4b=b2-4b.
令b2-4b=-4,∴b2-4b+4=0,∴b=2,
∴直线l过定点(2,0).∴若
·
=-4,则直线l必过一定点.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=lnx﹣ax+
﹣1. (Ⅰ)当a=1时,求曲线f(x)在x=1处的切线方程;
(Ⅱ)当a=
时,求函数f(x)的单调区间;
(Ⅲ)在(Ⅱ)的条件下,设函数g(x)=x2﹣2bx﹣
,若对于x1∈[1,2],x2∈[0,1],使f(x1)≥g(x2)成立,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的导函数为f′(x),满足xf′(x)+2f(x)=
,且f(e)= ![]()
(Ⅰ)求f(x)的表达式
(Ⅱ)求函数f(x)在[1,e2]上的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点(1,1)且与曲线y=x3相切的切线方程为( )
A.y=3x﹣2
B.y=
x+ ![]()
C.y=3x﹣2或y=
x+ ![]()
D.y=3x﹣2或y=
x﹣ ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用系统抽样方法从960人中抽取32人做问卷调查为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,若抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落人区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校有一块圆心
,半径为200米,圆心角为
的扇形绿地
,半径
的中点分别为
,
为弧
上的一点,设
,如图所示,拟准备两套方案对该绿地再利用.
(1)方案一:将四边形绿地
建成观赏鱼池,其面积记为
,试将
表示为关于
的函数关系式,并求
为何值时,
取得最大?
(2)方案二:将弧
和线段
围成区域建成活动场地,其面积记为
,试将
表示为关于
的函数关系式;并求
为何值时,
取得最大?
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com