精英家教网 > 高中数学 > 题目详情

【题目】从抛物线上各点向x轴作垂线,垂线段中点的轨迹为E.

1)求曲线E的方程;

2)若直线与曲线E相交于AB两点,求证:

3)若点F为曲线E的焦点,过点的直线与曲线E交于MN两点,直线分别与曲线E交于CD两点,设直线斜率分别为,求的值.

【答案】1;(2)证明见解析;(3.

【解析】

(1)设垂线段的中点为时抛物线上的点,得出,代入抛物线方程可求出曲线E的方程.
(2)将直线代入抛物线方程,求得,代入直线方程求得,由,即可证明.
(3)设直线,设,联立直线方程与抛物线方程,利用韦达定理的关系得,由MFC三点共线,MFC三点共线,

利用的坐标表示出的坐标,即可得到答案.

1)令抛物线上一点,设垂线段的中点为.

由已知得

满足,∴,则,即

∴曲线E的方程为:

2)由,可得

,由于

由韦达定理可知:

3)设,直线,则

恒成立,

MFC三点共线,得,化简为:,从而

同理,由NFD三点共线,得

所以

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,三棱柱的侧棱垂直于底面,且底面是边长为2的正三角形,,点DEF分别是所在棱的中点.

(1)在线段上找一点使得平面∥平面,给出点的位置并证明你的结论;

(2)在(1)的条件下,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着经济模式的改变,微商和电商已成为当今城乡一种新型的购销平台.已知经销某种商品的电商在任何一个销售季度内,每售出吨该商品可获利润万元,未售出的商品,每吨亏损万元.根据往年的销售经验,得到一个销售季度内市场需求量的频率分布直方图如图所示.已知电商为下一个销售季度筹备了吨该商品.现以(单位:吨,)表示下一个销售季度的市场需求量,(单位:万元)表示该电商下一个销售季度内经销该商品获得的利润.

1)将表示为的函数,求出该函数表达式;

2)根据直方图估计利润不少于57万元的概率;

3)根据频率分布直方图,估计一个销售季度内市场需求量的平均数与中位数的大小(保留到小数点后一位).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是圆上的一动点,点,点在线段上,且满足.

(1)求点的轨迹的方程;

(2)设曲线轴的正半轴,轴的正半轴的交点分别为点,斜率为的动直线交曲线两点,其中点在第一象限,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】松、竹、梅经冬不衰,因此有“岁寒三友”之称.在我国古代的诗词和典籍中有很多与松和竹相关的描述和记载,宋代刘学箕的《念奴娇·水轩沙岸》的“缀松黏竹,恍然如对三绝”描写了大雪后松竹并生相依的美景;宋元时期数学名著《算学启蒙》中亦有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.现欲知几日后,竹长超过松长一倍.为了解决这个新问题,设计下面的程序框图,若输入的,则输出的的值为(

A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与椭圆相切于第一象限的点,且直线轴,轴分别交于点,当为坐标原点)的面积最小时,为椭圆的两个焦点),则此时的平分线的长度为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国2019年新年贺岁大片《流浪地球》自上映以来引发了社会的广泛关注,受到了观众的普遍好评.假设男性观众认为《流浪地球》好看的概率为,女性观众认为《流浪地球》好看的概率为,某机构就《流浪地球》是否好看的问题随机采访了4名观众(其中22女).

1)求这4名观众中女性认为好看的人数比男性认为好看的人数多的概率;

2)设表示这4名观众中认为《流浪地球》好看的人数,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在定义域上满足恒成立.

(1)求实数的值;

(2)令上的最小值为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知对数函数过定点(其中),函数(其中的导函数,为常数)

1)讨论的单调性;

2)若对恒成立,且)处的导数相等,求证:.

查看答案和解析>>

同步练习册答案