【题目】已知数列
的各项均为正数,其前n项的积为
,记
,
.
(1)若数列
为等比数列,数列
为等差数列,求数列
的公比.
(2)若
,
,且![]()
①求数列
的通项公式.
②记
,那么数列
中是否存在两项
,(s,t均为正偶数,且
),使得数列
,
,
,成等差数列?若存在,求s,t的值;若不存在,请说明理由.
【答案】(1)数列
的公比为1(2)①
②存在;s,t的值为
和![]()
【解析】
(1)由
得
的等式,再由
可求得
的关系,得出结论;
(2)①已知条件可变形为
(
),从而可求出
,从而可得
,注意
,求积可得
;
②由①知
.利用导数研究函数
的单调性得数列
的单调性:
,假设存在s,t满足题意,若
,由单调性出现矛盾,这样
,
,分别求
.即可得结论.
(1)因为数列
为等差数列,
所以
.
又因为
,
,
,
所以
(*)
因为数列
为等比数列,所以
,
代入(*)得
,即
,
所以
,
故数列
的公比为1.
(2)①当
时,由![]()
得
,
从而![]()
又因为
,
,
所以![]()
故
,
,
所以
.
综上,数列
的通项公式为
.
②由①知
.
记
,则
,
从而函数
在
上单调递增,在
上单调递减.
又因为
,
所以
.
假设存在s,t满足题意,若
,
则
,
,所以
,不合题意,
所以s只能为2,4,6,且
.
(i)当
时,由
,得
,
故
.
由数列
的单调性可知存在唯一的
满足题意.
(ii)当
时,由
,得
,
故
.
同(i)知
.
(ⅲ)当
时,由
,得![]()
故
.
又因为
,
由数列
的单调性知
,故
,
但
不成立,所以与题意不符.
综上,满足条件的s,t的值为
和
.
科目:高中数学 来源: 题型:
【题目】已知抛物线
,过抛物线的焦点
且与
轴垂直的直线与抛物线在第一象限交于点
,
的面积为
,其中
为坐标原点.
(1)求抛物线的标准方程;
(2)若
,
,
为抛物线上的两个不同的点,直线
,
的斜率分别为
,
,且![]()
,求点
到直线
的距离的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是抛物线
的焦点,离心率为
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若
,
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知项数为
的数列
满足如下条件:①
;②
若数列
满足
其中
则称
为
的“伴随数列”.
(I)数列
是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;
(II)若
为
的“伴随数列”,证明:
;
(III)已知数列
存在“伴随数列”
且
求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线C的参数方程为
(θ为参数),直线l的参数方程为
(m为参数),以平面直角坐标系的原点O为极点,x轴正半轴为极轴,建立坐标系.
(1)求曲线C的极坐标方程;
(2)直线l与曲线C相交于M,N两点,若
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三人投篮的命中率各不相同,其中乙的命中率是甲的2倍,丙的命中率等于甲与乙的命中率之和.若甲与乙各投篮一次,每人投篮相互独立,则他们都命中的概率为0.18.
(1)求甲、乙、丙三人投篮的命中率;
(2)现要求甲、乙、丙三人各投篮一次,假设每人投篮相互独立,记三人命中总次数为
,求
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】首届中国国际进口博览会于2018年11月5日至10日在上海举办,本届展会共有来自172个国家、地区和国际组织参会,3600多家企业参展,超过40万名采购商到会洽谈采购,其中中国馆更是吸引众人眼球.为了使博览会有序进行,组委会安排6名志愿者到中国馆的某4个展区提供服务,要求
展区各安排一名志愿者,其余两个展区各安排两名志愿者,其中小马和小王不在一起,则不同的安排方案共有( )
A.156种B.168种C.172种D.180种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数
(其中
)的图象如图所示,为了得到
的图象,则只要将
的图象上所有的点( )
A.向左平移
个单位长度,纵坐标缩短到原来的
,横坐标不变
B.向左平移
个单位长度,纵坐标伸长到原来的3倍横坐标不变
C.向右平移
个单位长度,纵坐标缩短到原来的
,横坐标不变
D.向右平移
个单位长度,纵坐标伸长到原来的3倍,横坐标不变
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com