【题目】某品牌新款夏装即将上市,为了对新款夏装进行合理定价,在该地区的三家连锁店各进行了两天试销售,得到如下数据:
连锁店 | A店 | B店 | C店 | |||
售价x(元) | 80 | 86 | 82 | 88 | 84 | 90 |
销量y(元) | 88 | 78 | 85 | 75 | 82 | 66 |
(1)分别以三家连锁店的平均售价与平均销量为散点,如A店对应的散点为
,求出售价与销量的回归直线方程
;
(2)在大量投入市场后,销量与单价仍然服从(1)中的关系,且该夏装成本价为40元/件,为使该新夏装在销售上获得最大利润,该款夏装的单价应定为多少元?(保留整数)
附:
,
.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
的参数方程为
(为参数,倾斜角),曲线C的参数方程为
(
为参数,
),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系。
(1)写出曲线
的普通方程和直线的极坐标方程;
(2)若直线与曲线
恰有一个公共点
,求点
的极坐标。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
为抛物线
的焦点,过点
的直线
与抛物线
相交于
、
两点.
(1)若
,求此时直线
的方程;
(2)若与直线
垂直的直线
过点
,且与抛物线
相交于点
、
,设线段
、
的中点分别为
、
,如图,求证:直线
过定点;
![]()
(3)设抛物线
上的点
、
在其准线上的射影分别为
、
,若△
的面积是△
的面积的两倍,如图,求线段
中点的轨迹方程.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的右焦点为
,过点
作与
轴垂直的直线
交椭圆于
,
两点(点
在第一象限),过椭圆的左顶点和上顶点的直线
与直线
交于
点,且满足
,设
为坐标原点,若
,
,则该椭圆的离心率为( )
A.
B.
C.
或
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面是正方形的四棱锥
中,
平面
,
,
是
的中点.
![]()
(1)求证:
平面
;
(2)在线段
上是否存在点
,使得
平面
?若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)已知椭圆
,直线
不过原点
且不平行于坐标轴,
与
有两个交点
,
,线段
的中点为
.
(Ⅰ)证明:直线
的斜率与
的斜率的乘积为定值;
(Ⅱ)若
过点
,延长线段
与
交于点
,四边形
能否为平行四边形?若能,求此时
的斜率,若不能,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com