精英家教网 > 高中数学 > 题目详情
16.函数$f(x)=\sqrt{x+3}+{log_2}(6-x)$的定义域是(  )
A.(6,+∞)B.(-3,6)C.(-3,+∞)D.[-3,6)

分析 根据二次根式以及对数函数的性质求出函数的定义域即可.

解答 解:由题意得:
$\left\{\begin{array}{l}{x+3≥0}\\{6-x>0}\end{array}\right.$,解得:-3≤x<6,
故选:D.

点评 本题考查了求函数的定义域问题,考查对数函数以及二次根式的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知椭圆3x2+4y2=12,则该椭圆的焦距为(  )
A.8B.6C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在等比数列{an}中,a1=1,公比q=2,则a3的值为(  )
A.2B.3C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.△ABC中,$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AC}=\overrightarrow b$,$\overrightarrow{BD}=\frac{1}{2}\overrightarrow{DC}$,则$\overrightarrow{AD}$=(  )
A.$\frac{2}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b$B.$\frac{1}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b$C.$\frac{1}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b$D.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.甲、乙二人做射击游戏,甲、乙射击击中与否是相互独立事件.规则如下:若射击一次击中,则原射击人继续射击;若射击一次不中,就由对方接替射击.已知甲、乙二人射击一次击中的概率均为$\frac{1}{3}$,且第一次由甲开始射击.
①求前3次射击中甲恰好击中2次的概率$\frac{2}{27}$;
②求第4次由甲射击的概率$\frac{13}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数f(x)=2x+a,若函数f(x)的图象过点(3,18),则a的值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\vec a=(\sqrt{3}sinωx,-cosωx),\vec b=(cosωx,cosωx)$,函数f(x)=$\overrightarrow a•\overrightarrow b+\frac{1}{2}$(ω>0)的最小正周期是π.
(1)求ω的值及函数f(x)的单调减区间;
(2)当$x∈[0,\frac{π}{2}]$时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=2sinx的图象上一点$(\frac{π}{3},\frac{{\sqrt{3}}}{2})$处的切线的倾斜角为(  )
A.$\frac{3π}{4}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{1+alnx}{x}$(a>0).
(Ⅰ)若函数f(x)在x=1处取得极值,且函数y=f(x)图象上一点的切线l过原点,求l的方程;
(Ⅱ)讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案