精英家教网 > 高中数学 > 题目详情
5.函数y=2sinx的图象上一点$(\frac{π}{3},\frac{{\sqrt{3}}}{2})$处的切线的倾斜角为(  )
A.$\frac{3π}{4}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 求出函数的导数,求出切线的斜率,然后求解切线的倾斜角即可.

解答 解:函数y=2sinx的导函数为:y′=2cosx,
在点$(\frac{π}{3},\frac{{\sqrt{3}}}{2})$处的切线的斜率为:2×$\frac{1}{2}$=1,
所以函数y=2sinx的图象上一点$(\frac{π}{3},\frac{{\sqrt{3}}}{2})$处的切线的倾斜角为:$\frac{π}{4}$.
故选:B.

点评 本题考查函数的导数的应用,切线的斜率与倾斜角的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.若平面向量$\overrightarrow a,\overrightarrow b$满足$|\overrightarrow a|=\sqrt{2},|\overrightarrow b|=2,(\overrightarrow a-\overrightarrow b)⊥\overrightarrow a$
(1)求$\overrightarrow a$与$\overrightarrow b$的夹角θ;
(2)求$|2\overrightarrow a+\overrightarrow b|$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数$f(x)=\sqrt{x+3}+{log_2}(6-x)$的定义域是(  )
A.(6,+∞)B.(-3,6)C.(-3,+∞)D.[-3,6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,椭圆C:x 2+3y 2=a2(a>0).
(Ⅰ) 求椭圆C的离心率;
(Ⅱ) 若a=$\sqrt{6}$,M,N是椭圆C上两点,且|MN|=2$\sqrt{3}$,求△MON面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.复数z=-2+i所对应的点在复平面的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆的离心率e=$\frac{\sqrt{2}}{2}$,左、右焦点分别为F1、F2,定点,P(2,$\sqrt{3}$),点F2在线段PF1的中垂线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+m与椭圆C交于M、N两点,直线F2M、F2N的倾斜角分别为α、β且α+β=π,求证:直线l过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知实数x,y满足2x+y=8,当2≤x≤3时,$\frac{y+1}{x-1}$的取值范围是$[\frac{3}{2},5]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,角A,B,C的对边分别为a,b,c.已知A=45°,cosB=$\frac{4}{5}$.
(1)求cosC的值;
(2)若BC=20,D为AB的中点,求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一条渐近线与x轴所成的夹角为30°,且双曲线的焦距为4$\sqrt{2}$.
(1)求椭圆C的方程;
(2)设F1,F2分别为椭圆C的左,右焦点,过F2作直线l(与x轴不重合)交于椭圆于A,B两点,线段AB的中点为E,记直线F1E的斜率为k,求k的取值范围.

查看答案和解析>>

同步练习册答案