分析 (1)根据向量的乘积的运算,求出f(x)的解析式,利用三角函数公式化简,最小正周期是π,可得ω的值,在结合三角函数的性质求解函数f(x)的单调减区间;
(2)当$0≤x≤\frac{π}{2}$时,求出内层函数的范围,结合三角函数的性质求最值,可得函数f(x)的值域.
解答 解:(1)向量$\vec a=(\sqrt{3}sinωx,-cosωx),\vec b=(cosωx,cosωx)$,
函数f(x)=$\overrightarrow a•\overrightarrow b+\frac{1}{2}$(ω>0)
即$f(x)=\sqrt{3}sinωxcosωx-{cos^2}ωx+\frac{1}{2}=\frac{{\sqrt{3}}}{2}sin2ωx-\frac{1}{2}(1+cos2ωx)+\frac{1}{2}$=$\frac{{\sqrt{3}}}{2}sin2ωx-\frac{1}{2}cos2ωx=sin(2ωx-\frac{π}{6})$
∵f(x)的最小正周期为π=$\frac{2π}{2ω}$,
∴ω=1.
∴f(x)的解析式为$f(x)=sin(2x-\frac{π}{6})$.
又∵$2kπ+\frac{π}{2}≤2x-\frac{π}{6}≤2kπ+\frac{3π}{2}$,k∈Z.
得:$kπ+\frac{1}{3}π≤x≤kπ+\frac{5}{6}π,k∈Z$,
∴函数f(x)的单调减区间$[kπ+\frac{1}{3}π,kπ+\frac{5}{6}π],k∈Z$.
(2)∵当$0≤x≤\frac{π}{2}$时,
可得:$-\frac{π}{6}≤2x-\frac{π}{6}≤\frac{5π}{6}$,
∴$-\frac{1}{2}≤sin(2x-\frac{π}{6})≤1$,
即f(x)的值域为$[-\frac{1}{2},1]$.
点评 本题主要考查了向量的乘积运算,三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | $-\frac{1}{2}$ | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (6,+∞) | B. | (-3,6) | C. | (-3,+∞) | D. | [-3,6) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com