【题目】已知函数f(x)=2
sin
cos
﹣2sin2
(ω>0)的最小正周期为3π.
(I)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC中,a,b,c分别为角A,B,C所对的边,a<b<c,
a=2csinA,并且f(
A+
)=
,求cosB的值.
【答案】解:(I)由三角函数公式化简可得
f(x)=2
sin
cos
﹣2sin2![]()
=
sinωx﹣1+cosωx
=2sin(ωx+
)﹣1,
∵函数f(x)的最小正周期为T=3π,
∴ω=
=
=
,
∴f(x)=2sin(
x+
)﹣1,
由2kπ﹣
≤
x+
≤2kπ+
可得3kπ﹣π≤x≤3kπ+
,
∴函数f(x)的单调递增区间为[3kπ﹣π,3kπ+
],k∈Z;
(Ⅱ)∵f(
A+
)=
,∴2sin(A+
+
)﹣1=
,
∴2sin(A+
)﹣1=
,∴2cosA﹣1=
,
解得cosA=
,∴sinA=
=
,
再由
a=2csinA和正弦定理可得
sinA=2sinCsinA,
约掉sinA可得sinC=
,∴C=
或C=
,
又∵a<b<c,∴C为最大角,C=
矛盾,
故C=
,cosC=﹣
,
∴cosB=﹣cos(A+C)=sinAsinC﹣cosAcosC
=
﹣
= ![]()
【解析】(I)由三角函数公式化简可得f(x)=2sin(ωx+
)﹣1,由周期公式可得ω,解2kπ﹣
≤
x+
≤2kπ+
可得;(Ⅱ)由题意和已知数据可得cosA=
,进而可得sinA=
,再由
a=2csinA和正弦定理可得C=
,整体代入cosB=﹣cos(A+C)=sinAsinC﹣cosAcosC,计算可得.
【考点精析】利用正弦定理的定义对题目进行判断即可得到答案,需要熟知正弦定理:
.
科目:高中数学 来源: 题型:
【题目】对于函数f(x)给出定义:
设f′(x)是函数y=f(x)的导数,f″(x)是函数f′(x)的导数,若方程f″(x)=0有实数解x0 , 则称点(x0 , f(x0))为函数y=f(x)的“拐点”.
某同学经过探究发现:任何一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数
,请你根据上面探究结果,计算
= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=4,AB=4
,∠CDA=120°,点N在线段PB上,且PN=2. ![]()
(1)求证:BD⊥PC;
(2)求证:MN∥平面PDC;
(3)求二面角A﹣PC﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】去年“十一”期间,昆曲高速公路车辆较多.某调查公司在曲靖收费站从7座以下小型汽车中按进收费站的先后顺序,每间隔50辆就抽取一辆的抽样方法抽取40辆汽车进行抽样调查,将他们在某段高速公路的车速(
)分成六段:
,
,
,
,
,
后,得到如图的频率分布直方图.
![]()
(I)调查公司在抽样时用到的是哪种抽样方法?
(II)求这40辆小型汽车车速的众数和中位数的估计值;
(III)若从这40辆车速在
的小型汽车中任意抽取2辆,求抽出的2辆车车速都在
的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线E:y2=2px(p>0)的准线与x轴交于点K,过点K作圆(x﹣5)2+y2=9的两条切线,切点为M,N,|MN|=3 ![]()
(1)求抛物线E的方程;
(2)设A,B是抛物线E上分别位于x轴两侧的两个动点,且
(其中O为坐标原点).
①求证:直线AB必过定点,并求出该定点Q的坐标;
②过点Q作AB的垂线与抛物线交于G,D两点,求四边形AGBD面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知3acosA=ccosB+bcosC.
(1)求cosA,sinA的值;
(2)若cosB+cosC=
,求cosC+
sinC的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,已知C=
,向量
=(sinA,1),
=(1,cosB),且
.
(1)求A的值;
(2)若点D在边BC上,且3
=
,
=
,求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com