【题目】已知
是椭圆
的左、右焦点,离心率为
,
是平面内两点,满足
,线段
的中点
在椭圆上,
周长为12.
(1)求椭圆
的方程;
(2)若过
的直线
与椭圆
交于
,求
(其中
为坐标原点)的取值范围.
【答案】(1)
(2)![]()
【解析】
(1)连接
,由向量的性质得出点
是线段
的中点,结合中位线定理以及椭圆的性质得出
,再由离心率公式得出
,进而得出
,即可得出椭圆方程;
(2)当直线
的斜率不存在时,将直线
,代入椭圆方程
,得出
坐标,利用向量数量积公式得出
;当直线
的斜率存在时,设直线
的方程为
,并代入椭圆方程,利用韦达定理得出
,
的值,由判别式得出
的范围,求出
,利用向量的数量积公式得出
,最后由不等式的性质得出其范围.
(1)连接
,![]()
,![]()
,
![]()
是线段
的中点,![]()
是线段
的中点,![]()
![]()
由椭圆的定义知,
,
![]()
周长为![]()
由离心率为
知,
,解得![]()
![]()
![]()
椭圆
的方程为
.
(2)当直线
的斜率不存在时,直线
,代入椭圆方程
解得
,
此时
,
当直线
的斜率存在时,设直线
的方程为![]()
代入椭圆
的方程
整理得,![]()
设
,则
,![]()
,解得![]()
![]()
![]()
=![]()
![]()
![]()
![]()
![]()
,![]()
,![]()
,![]()
![]()
![]()
![]()
综上所述,
的取值范围为
.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,且椭圆上存在一点
,满足
.
(1)求椭圆
的标准方程;
(2)过椭圆
右焦点
的直线
与椭圆
交于不同的两点
,求
的内切圆的半径的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直线
ax+by=1与圆x2+y2=1相交于A,B两点(其中a,b是实数),且△AOB是直角三角形(O是坐标原点),则点P(a,b)与点(0,1)之间距离的最小值为( ).
A.0B.
C.
-1D.
+1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《宋人扑枣图轴》是作于宋朝的中国古画,现收藏于中国台北故宫博物院.该作品简介:院角的枣树结实累累,小孩群来攀扯,枝桠不停晃动,粒粒枣子摇落满地,有的牵起衣角,有的捧着盘子拾取,又玩又吃,一片兴高采烈之情,跃然于绢素之上.甲、乙、丙、丁四人想根据该图编排一个舞蹈,舞蹈中他们要模仿该图中小孩扑枣的爬、扶、捡、顶四个动作,四人每人模仿一个动作.若他们采用抽签的方式来决定谁模仿哪个动作,则甲不模仿“爬”且乙不模仿“扶”的概率是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学根据学生的兴趣爱好,分别创建了“书法”、“诗词”、“理学”三个社团,据资料统计新生通过考核选拔进入这三个社团成功与否相互独立.2015年某新生入学,假设他通过考核选拔进入该校的“书法”、“诗词”、“理学”三个社团的概率依次为
、
、
,己知三个社团他都能进入的概率为
,至少进入一个社团的概率为
,且
.
(1)求
与
的值;
(2)该校根据三个社团活动安排情况,对进入“书法”社的同学增加校本选修学分1分,对进入“诗词”社的同学增加校本选修学分2分,对进入“理学”社的同学增加校本选修学分3分.求该新同学在社团方面获得校本选修课学分分数不低于4分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
,其中
为参数,
.在以坐标原点
为极点,轴的正半轴为极轴的极坐标系中,点
的极坐标为
,直线
的极坐标方程为
.
(1)求直线
的直角坐标方程与曲线
的普通方程;
(2)若
是曲线
上的动点,
为线段
的中点.求点
到直线
的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2013年华人数学家张益唐证明了孪生素数猜想的一个弱化形式。孪生素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷多个素数p,使得p+2是素数,素数对(p,p+2)称为孪生素数.在不超过30的素数中,随机选取两个不同的数,其中能够组成孪生素数的概率是
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com