已知函数
.
(1)若
,求曲线
在点
处的切线方程;
(2)若函数
在其定义域内为增函数,求正实数
的取值范围;
(3)设函数
,若在
上至少存在一点
,使得
成立,求实数
的取值范围.
(1)
;(2)
;(3)
.
解析试题分析:本题主要考查导数的运算、利用导数求曲线的切线、利用导数判断函数的单调性、利用导数求函数的最值、恒成立问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力,考查学生的分类讨论思想、函数思想.第一问,对
求导,将切点的横坐标代入得到切线的斜率,再将切点的横坐标代入到
中,得到切点的纵坐标,利用点斜式得到切线的方程;第二问,
在定义域
内是增函数,只需
在
恒成立,对
求导,由于分母恒正,只需分子
在
恒成立,设函数
,利用抛物线的性质求出
,令
即可,解出P的值;第三问,先通过函数
的单调性求出
的值域,通过对P的讨论研究
的单调性,求出
的值域,看是否有值大于
的最小值为2.
(1)当
时,函数
,
.
,曲线
在点
处的切线的斜率为
.
从而曲线
在点
处的切线方程为
,即
.…4分
(2)
.
令
,要使
在定义域
内是增函数,只需
在
内恒成立.
由题意
,
的图象为开口向上的抛物线,对称轴方程为
,∴
, 只需
,即
时,![]()
∴
在
内为增函数,正实数
的取值范围是
.……9分
(3)∵
在
上是减函数,
∴
时,
;
时,
,即
,
①当
时,
,其图象为开口向下的抛物线,对称轴
在
轴的左侧,且
,所以
在![]()
内是减函数.
当
时,
,因为![]()
,所以
,
,
此时,![]()
![]()
科目:高中数学 来源: 题型:解答题
已知f(x)=ex-t(x+1).
(1)若f(x)≥0对一切正实数x恒成立,求t的取值范围;
(2)设
,且A(x1,y1)、B(x2,y2)(x1≠x2)是曲线y=g(x)上任意两点,若对任意的t≤-1,直线AB的斜率恒大于常数m,求m的取值范围;
(3)求证:
(n∈N*).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=xlnx-
x2.
(1)当a=1时,函数y=f(x)有几个极值点?
(2)是否存在实数a,使函数f(x)=xlnx-
x2有两个极值?若存在,求实数a的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=ln x,g(x)=
x2-bx(b为常数).
(1)函数f(x)的图像在点(1,f(1))处的切线与g(x)的图像相切,求实数b的值;
(2)设h(x)=f(x)+g(x),若函数h(x)在定义域上存在单调减区间,求实数b的取值范围;
(3)若b>1,对于区间[1,2]上的任意两个不相等的实数x1,x2,都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
,
.
(1)若
的极大值为
,求实数
的值;
(2)若对任意
,都有
恒成立,求实数
的取值范围;
(3)若函数f(x)满足:在定义域内存在实数x0,使f(x0+k)= f(x0)+ f(k)(k为常数),则称“f(x)关于k可线性分解”. 设
,若
关于实数a 可线性分解,求
取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数f(x)=ln x-ax,g(x)=ex-ax,其中a为实数.若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com