【题目】已知集合M是满足下列性制的函数f(x)的全体,存在实数a、k(k≠0),对于定义域内的任意x均有f(a+x)=kf(a﹣x)成立,称数对(a,k)为函数f(x)的“伴随数对”.
(1)判断f(x)=x2是否属于集合M,并说明理由;
(2)若函数f(x)=sinx∈M,求满足条件的函数f(x)的所有“伴随数对”;
(3)若(1,1),(2,﹣1)都是函数f(x)的“伴随数对”,当1≤x<2时,f(x)=cos(
x);当x=2时,f(x)=0,求当2014≤x≤2016时,函数y=f(x)的解析式和零点.
【答案】
(1)解:f(x)=x2的定义域为R.
假设存在实数a、k(k≠0),对于定义域内的任意x均有f(a+x)=kf(a﹣x)成立,
则(a+x)2=k(a﹣x)2,化为:(k﹣1)x2﹣2a(k+1)x+a2(k﹣1)=0,
由于上式对于任意实数x都成立,∴
,解得k=1,a=0.
∴(0,1)是函数f(x)的“伴随数对”,f(x)∈M
(2)解:∵函数f(x)=sinx∈M,
∴sin(a+x)=ksin(a﹣x),∴(1+k)cosasinx+(1﹣k)sinacosx=0,
∴
sin(x+φ)=0,
∵x∈R都成立,∴k2+2kcos2a+1=0,
∴cos2a=
,
≥2,
∴|cos2a|≥1,又|cos2a|≤1,
故|cos2a|=1.
当k=1时,cos2a=﹣1,a=nπ+
,n∈Z.
当k=﹣1时,cos2a=1,a=nπ,n∈Z.
∴f(x)的“伴随数对”为(nπ+
,1),(nπ,﹣1),n∈Z
(3)解:∵(1,1),(2,﹣1)都是函数f(x)的“伴随数对”,
∴f(1+x)=f(1﹣x),f(2+x)=﹣f(2﹣x),
∴f(x+4)=f(x),T=4.
当0<x<1时,则1<2﹣x<2,此时f(x)=f(2﹣x)=﹣cos
;
当2<x<3时,则1<4﹣x<2,此时f(x)=﹣f(4﹣x)=﹣cos
;
当3<x<4时,则0<4﹣x<1,此时f(x)=﹣f(4﹣x)=cos
.
∴f(x)=
.
∴f(x)=
.
∴当2014≤x≤2016时,函数y=f(x)的零点为2014,2015,2016
【解析】(1)f(x)=x2的定义域为R.假设存在实数a、k(k≠0),对于定义域内的任意x均有f(a+x)=kf(a﹣x)成立,则(a+x)2=k(a﹣x)2 , 化为:(k﹣1)x2﹣2a(k+1)x+a2(k﹣1)=0,由于上式对于任意实数x都成立,可得
,解得k,a.即可得出.(2)函数f(x)=sinx∈M,可得:sin(a+x)=ksin(a﹣x),展开化为:
sin(x+φ)=0,由于x∈R都成立,可得k2+2kcos2a+1=0,变形cos2a=
,利用基本不等式的性质与三角函数的单调性即可得出.(3)由于(1,1),(2,﹣1)都是函数f(x)的“伴随数对”,可得f(1+x)=f(1﹣x),f(2+x)=﹣f(2﹣x),因此f(x+4)=f(x),T=4.对x分类讨论可得:即可得出解析式,进而得出零点.
【考点精析】本题主要考查了函数的值的相关知识点,需要掌握函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在(﹣4,4)上的奇函数,满足f(2)=1,当﹣4<x≤0时,有f(x)=
.
(1)求实数a,b的值;
(2)若f(m+1)+
>0.求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点列An(an , bn)(n∈N*)均为函数y=ax(a>0,a≠1)的图象上,点列Bn(n,0)满足|AnBn|=|AnBn+1|,若数列{bn}中任意连续三项能构成三角形的三边,则a的取值范围为( )
A.(0,
)∪(
,+∞)
B.(
,1)∪(1,
)
C.(0,
)∪(
,+∞)
D.(
,1)∪(1,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中a∈R.
(1)根据a的不同取值,讨论f(x)的奇偶性,并说明理由;
(2)已知a>0,函数f(x)的反函数为f﹣1(x),若函数y=f(x)+f﹣1(x)在区间[1,2]上的最小值为1+log23,求函数f(x)在区间[1,2]上的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin2x+2
sin(x+
)cos(x﹣
)﹣cos2x﹣
.
(1)求函数f(x)的单调递减区间;
(2)求函数f(x)在[﹣
,
π]上的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)满足f(x+y)=f(x)·f(y),且f(1)=
.
(1)当n∈N+,求f(n)的表达式;
(2)设an=nf(n),n∈N+,求证:a1+a2+…+an<2.
【答案】(1)
(2)见解析
【解析】
(1)利用f(x+y)=f(x)f(y)(x,y∈R)通过令x=n,y=1,说明{f(n)}是以f(1)=
为首项,公比为
的等比数列求出
;(2)利用(1)求出an=nf(n)的表达式,利用错位相减法求出数列的前n项和,即可说明不等式成立.
(1)解:f(n)=f[(n-1)+1]
=f(n-1)·f(1)=
f(n-1).
∴当n≥2时,
=
.
又f(1)=
,
∴数列{f(n)}是首项为
,公比为
的等比数列,
∴f(n)=f(1)·(
)n-1=(
)n.
(2)证明:由(1)可知,
an=n·(
)n=n·
,
设Sn=a1+a2+…+an,
则Sn=
+2×
+3×
+…+(n-1)·
+n·
,①
∴
Sn=
+2×
+…+(n-2)·
+(n-1)·
+n·
.②
①-②得,
Sn=
+
+
+…+
-n·![]()
=
-
=1-
-
,
∴Sn=2-
-
<2.
即a1+a2+…+an<2.
【点睛】
本题考查数列与函数的关系,数列通项公式的求法和的求法,考查不等式的证明,裂项法与错位相减法的应用,数列通项的求法中有常见的已知
和
的关系,求
表达式,一般是写出
做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等.
【题型】解答题
【结束】
22
【题目】设数列{an}的前n项和为Sn.已知a1=a (a≠3),an+1=Sn+3n,n∈N+.
(1)设bn=Sn-3n,求数列{bn}的通项公式;
(2)若an+1≥an,n∈N+,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“过大年,吃水饺”是我国不少地方过春节的一大习俗,2018年春节前夕,
市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标.
![]()
(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数
(同一组中的数据用该组区间的中点值作代表);
(2)①由直方图可以认为,速冻水饺的该项质量指标值
服从正态分布
,利用该正态分布,求
落在
内的概率;
②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于
内的包数为
,求
的分布列和数学期望.
附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为
;
②若
,则
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com