精英家教网 > 高中数学 > 题目详情

【题目】千百年来,我国劳动人民在生产实践中根据云的形状、走向、速度、厚度、颜色等的变化,总结了丰富的“看云识天气”的经验,并将这些经验编成谚语,如“天上钩钩云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同学为了验证“日落云里走,雨在半夜后”,观察了所在地区天日落和夜晚天气,得到如下列联表:

夜晚天气日落云里走

下雨

未下雨

出现

未出现

参考公式:.

临界值表:

1)根据上面的列联表判断能否有的把握认为“当晚下雨”与“‘日落云里走’出现”有关?

2)小波同学为进一步认识其规律,对相关数据进行分析,现从上述调查的“夜晚未下雨”天气中按分层抽样法抽取天,再从这天中随机抽出天进行数据分析,求抽到的这天中仅有天出现“日落云里走”的概率.

【答案】1)有的把握认为“当晚下雨”与“‘日落云里走’出现”有关;(2

【解析】

1)根据列联表计算,对照临界值得出结论;

2)利用分层抽样法求出抽取的天数,根据题意求出基本事件数,计算对应的概率值.

1)根据列联表,计算

所以有的把握认为“当晚下雨”与“‘日落云里走’出现”有关;

2)从“夜晚未下雨”天气中按分层抽样法抽取天,则从出现“日落云里走”的天气中应抽取天,记为,从未出现“日落云里走”的天气中应抽取天,记为

随机抽出2天,所有的基本事件有:,共种情况,

仅有天出现“日落云里走”包含的基本事件有:,共种情况,

因此,所求概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】日,国务院总理李克强在做政府工作报告时说,打好精准脱贫攻坚战.江西省贫困县脱贫摘帽取得突破性进展:年,稳定实现扶贫对象两不愁、三保障,贫困县全部退出.围绕这个目标,江西正着力加快增收步伐,提高救助水平,改善生活条件,打好产业扶贫、保障扶贫、安居扶贫三场攻坚战.为响应国家政策,老张自力更生开了一间小型杂货店.据长期统计分析,老张的杂货店中某货物每天的需求量之间,日需求量(件)的频率分布如下表所示:

己知其成本为每件元,售价为每件元若供大于求,则每件需降价处理,处理价每件元.

1)设每天的进货量为,视日需求量的频率为概率,求在每天进货量为的条件下,日销售量的期望值(用表示);

2)在(1)的条件下,写出的关系式,并判断为何值时,日利润的均值最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,若满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界

1)设,判断上是否是有界函数,若是,说明理由,并写出所有上界的值的集合;若不是,也请说明理由.

2)若函数上是以为上界的有界函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.

1)求曲线C的方程;

2)设不经过点的直线l与曲线C相交于AB两点,直线QA与直线QB的斜率均存在且斜率之和为-2,证明:直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一年度未发生有责任道路交通事故

下浮10%

上两年度未发生有责任道路交通事故

下浮

上三年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故

上浮10%

上一个年度发生有责任交通死亡事故

上浮30%

某机构为了解某一品牌普通6座以下私家车的投保情况,随机抽取了辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

A1

A2

A3

A4

A5

A6

数量

10

5

5

20

15

5

以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:

1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)

2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000:

①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;

②若该销售商一次购进100(车龄已满三年)该品牌二手车,求他获得利润的期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,要使函数恰有一个零点,则实数的取值范围是( ).

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】蜂巢是由工蜂分泌蜂蜡建成的从正面看,蜂巢口是由许多正六边形的中空柱状体连接而成,中空柱状体的底部是由三个全等的菱形面构成,菱形的一个角度是,这样的设计含有深刻的数学原理、我国著名数学家华罗庚曾专门研究蜂巢的结构著有《谈谈与蜂房结构有关的数学问题》.用数学的眼光去看蜂巢的结构,如图,在六棱柱的三个顶点ACE处分别用平面BFM,平面BDO,平面DFN截掉三个相等的三棱锥,平面BFM,平面BDO,平面DFN交于点P,就形成了蜂巢的结构.如图,设平面PBOD与正六边形底面所成的二面角的大小为,则有:(

A.B.

C.D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直角坐标系xOy中,已知MN是圆C:(x2)2+(y3)2=2的一条弦,且CMCNPMN的中点.当弦MN在圆C上运动时,直线lxy5=0上总存在两点AB,使得恒成立,则线段AB长度的最小值是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点为,上、下顶点为,四边形是面积为2的正方形.

1)求椭圆的标准方程;

2)已知点,过点的直线与椭圆交于两点,求证:.

查看答案和解析>>

同步练习册答案