【题目】已知函数
,
,其中
.
(1)若
是函数
的极值点,求实数
的值;
(2)若对任意的
(
为自然对数的底数)都有
≥
成立,求实数
的取值范围.
【答案】(1)
(2)![]()
【解析】
试题本题主要考查利用导数求函数的极值、单调区间、最值等基础知识及分类讨论思想,也考查了学生分析问题解决问题的能力及计算能力.第一问先对函数进行求导,再把极值点代入导函数求得实数a的值;第二问对任意的x1,x2∈[1,e]都有f(x1)≥g(x2)成立等价于对任意的x1,x2∈[1,e],都有f(x)min≥g(x)max,利用导数分别判断函数f (x)、g(x)的单调性并求其在定义域范围内的最值,判断单调性时可对实数a进行分类讨论,则可求得实数a的取值范围.
试题解析:(1)∵h(x)=2x+
+ln x,其定义域为(0,+∞),∴h′(x)=2-
+
,
∵x=1是函数h(x)的极值点,∴h′(1)=0,即3-a2=0.
∵a>0,∴a=
.
经检验当a=
时,x=1是函数h(x)的极值点,∴a=
.
(2)对任意的x1,x2∈[1,e]都有f(x1)≥g(x2)成立等价于对任意的x1,x2∈[1,e],都有f(x)min≥g(x)max.
当x∈[1,e]时,g′(x)=1+
>0.
∴函数g(x)=x+ln x在[1,e]上是增函数,∴g(x)max=g(e)=e+1.
∵f′(x)=1-
=
,且x∈[1,e],a>0.
①当0<a<1且x∈[1,e]时,f′(x)=
>0,
∴函数f(x)=x+
在[1,e]上是增函数,∴f(x)min=f(1)=1+a2.
由1+a2≥e+1,得a≥
,又0<a<1,∴a不合题意.
②当1≤a≤e时,
若1≤x≤a,则f′(x)=
<0,
若a<x≤e,则f′(x)=
>0.
∴函数f(x)=x+
在[1,a)上是减函数,在(a,e]上是增函数.
∴f(x)min=f(a)=2a.
由2a≥e+1,得a≥
. 又1≤a≤e,∴
≤a≤e.
③当a>e且x∈[1,e]时f′(x)=
<0,
函数f(x)=x+
在[1,e]上是减函数.∴f(x)min=f(e)=e+
.
由e+
≥e+1,得a≥
,又a>e,∴a>e.
综上所述,a的取值范围为[
,+∞).
科目:高中数学 来源: 题型:
【题目】(本题满分15分)已知中心在原点O,焦点在x轴上,离心率为
的椭圆过点(
,
).
(Ⅰ) 求椭圆的方程;
(Ⅱ) 设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a为实数,函数
,
(1)若
,求不等式
的解集;
(2)是否存在实数a,使得函数
在区间
上既有最大值又有最小值?若存在,求出实数a的取值范围;若不存在,请说明理由;
(3)写出函数
在R上的零点个数(不必写出过程).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
已知动点
都在曲线
(
为参数,
是与
无关的正常数)上,对应参数分别为
与
,
为
的中点.
(1)求
的轨迹的参数方程;
(2)作一个伸压变换:
,求出动点
点的参数方程,并判断动点
的轨迹能否过点
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
,在
处的切线方程为
.
(1)求
,
;
(2)若
,证明:
.
【答案】(1)
,
;(2)见解析
【解析】试题分析:(1)求出函数的导数,得到关于
的方程组,解出即可;
(2)由(1)可知
,
,
由
,可得
,令
, 利用导数研究其单调性可得
,
从而证明
.
试题解析:((1)由题意
,所以
,
又
,所以
,
若
,则
,与
矛盾,故
,
.
(2)由(1)可知
,
,
由
,可得
,
令
,
,
令![]()
当
时,
,
单调递减,且
;
当
时,
,
单调递增;且
,
所以
在
上当单调递减,在
上单调递增,且
,
故
,
故
.
【点睛】本题考查利用函数的切线求参数的方法,以及利用导数证明不等式的方法,解题时要认真审题,注意导数性质的合理运用.
【题型】解答题
【结束】
22
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
,
为参数),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
,若直线
与曲线
相切;
(1)求曲线
的极坐标方程;
(2)在曲线
上取两点
,
与原点
构成
,且满足
,求面积
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
是
上的偶函数,对于任意
都有
成立,当
,且
时,都有
.给出以下三个命题:
①直线
是函数
图像的一条对称轴;
②函数
在区间
上为增函数;
③函数
在区间
上有五个零点.
问:以上命题中正确的个数有( ).
A.
个B.
个C.
个D.
个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某市统考的学生数学考试卷中随机抽查100份数学试卷作为样本,分别统计出这些试卷总分,由总分得到如下的频率分别直方图.
![]()
(1)求这100份数学试卷成绩的中位数;
(2)从总分在
和
的试卷中随机抽取2份试卷,求抽取的2份试卷中至少有一份总分少于65分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,为了测量某一隧道两侧A、B两地间的距离,某同学首先选定了不在直线AB上的一点C(
中∠A、∠B、∠C所对的边分别为a、b、c),然后确定测量方案并测出相关数据,进行计算.现给出如下四种测量方案;①测量∠A,∠C,b;②测量∠A,∠B,∠C;③测量a,b,∠C;④测量∠A,∠B,a,则一定能确定A、B间距离的所有方案的序号为( )
![]()
A.①③B.①③④C.②③④D.①②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com