【题目】某粮库拟建一个储粮仓如图所示,其下部是高为2的圆柱,上部是母线长为2的圆锥,现要设计其底面半径和上部圆锥的高,若设圆锥的高
为
,储粮仓的体积为
.
![]()
(1)求
关于
的函数关系式;(圆周率用
表示)
(2)求
为何值时,储粮仓的体积最大.
【答案】(Ⅰ)
,
.(Ⅱ)
.
【解析】试题分析:(Ⅰ)由题圆锥和圆柱的底面半径
, 可得储粮仓的体积
,
.
(Ⅱ)利用导数求(Ⅰ)中的函数最值即可.
试题解析:(Ⅰ)∵圆锥和圆柱的底面半径
, ∴
.
∴
,即
,
.
(Ⅱ)
,令
,
解得
,
.又
,∴
(舍去).
当
变化时,
的变化情况如下表:
![]()
故当
时,储粮仓的体积最大.
点晴:研究数学模型,建立数学模型,进而借鉴数学模型,对提高解决实际问题的能力,以及提高数学素养都是十分重要的.建立模型的步骤可分为: (1) 分析问题中哪些是变量,哪些是常量,分别用字母表示; (2) 根据所给条件,运用数学知识,确定等量关系; (3) 写出f(x)的解析式并指明定义域.
科目:高中数学 来源: 题型:
【题目】[选修4-1:几何证明选讲]
如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.![]()
(1)证明:B,C,G,F四点共圆;
(2)若AB=1,E为DA的中点,求四边形BCGF的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,圆C1和C2的参数方程分别是
(φ为参数)和
(φ为参数),以O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求圆C1和C2的极坐标方程;
(2)射线OM:θ=a与圆C1的交点为O、P,与圆C2的交点为O、Q,求|OP||OQ|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数f(x)=(|x﹣2|+1)4,给出如下三个命题:①f(x+2)是偶函数;②f(x)在区间(﹣∞,2)上是减函数,在区间(2,+∞)上是增函数;③f(x)没有最小值.其中正确的个数为( )
A. 1 B. 2 C. 3 D. 0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】棱台
的三视图与直观图如图所示.
![]()
(1)求证:平面
平面
;
(2)在线段
上是否存在一点
,使
与平面
所成的角的正弦值为
?若存在,指出点
的位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“双十一”已经成为网民们的网购狂欢节,某电子商务平台对某市的网民在今年“双十一”的网购情况进行摸底调查,用随机抽样的方法抽取了100人,其消费金额
(百元)的频率分布直方图如图所示:
![]()
(1)求网民消费金额
的平均值和中位数
;
(2)把下表中空格里的数填上,能否有90%的把握认为网购消费与性别有关;
![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=
,其中a>﹣1.若f(x)在R上是增函数,则实数a的取值范围是( )
A.[e+1,+∞)
B.(e+1,+∞)
C.(e﹣1,+∞)
D.[e﹣1,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com