【题目】如图,抛物线
的焦点为
,过点
作直线
与抛物线交于
、
两点,当直线
与
轴垂直时
长为
.
![]()
(1)求抛物线的方程;
(2)若
与
的面积相等,求直线
的方程.
科目:高中数学 来源: 题型:
【题目】某班级有60名学生,学号分别为1~60,其中男生35人,女生25人.为了了解学生的体质情况,甲、乙两人对全班最近一次体育测试的成绩分别进行了随机抽样.其中一人用的是系统抽样,另一人用的是分层抽样,他们得到各12人的样本数据如下所示,并规定体育成绩大于或等于80人为优秀.
甲抽取的样本数据:
学号 | 4 | 9 | 14 | 19 | 24 | 29 | 34 | 39 | 44 | 49 | 54 | 59 |
性别 | 男 | 女 | 男 | 男 | 女 | 男 | 女 | 男 | 女 | 女 | 男 | 男 |
体育成绩 | 90 | 80 | 75 | 80 | 83 | 85 | 75 | 80 | 70 | 80 | 83 | 70 |
女抽取的样本数据:
学号 | 1 | 8 | 10 | 20 | 23 | 28 | 33 | 35 | 43 | 48 | 52 | 57 |
性别 | 男 | 男 | 男 | 男 | 男 | 男 | 男 | 女 | 女 | 女 | 女 | 女 |
体育成绩 | 95 | 85 | 85 | 80 | 70 | 80 | 80 | 65 | 70 | 60 | 70 | 80 |
(Ⅰ)在乙抽取的样本中任取4人,记这4人中体育成绩优秀的学生人数为
,求
的分布列和数学期望;
(Ⅱ)请你根据乙抽取的样本数据,判断是否有95%的把握认为体育成绩是否为优秀和性别有关;
(Ⅲ)判断甲、乙各用的何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优,说明理由.
附:![]()
| 0.15 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正四棱锥
的侧棱和底面边长相等,在这个正四棱锥的
条棱中任取两条,按下列方式定义随机变量
的值:
若这两条棱所在的直线相交,则
的值是这两条棱所在直线的夹角大小(弧度制);
若这两条棱所在的直线平行,则
;
若这两条棱所在的直线异面,则
的值是这两条棱所在直线所成角的大小(弧度制).
(1)求
的值;
(2)求随机变量
的分布列及数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥
中,
与
均为等腰直角三角形,且
,
,
为
上一点,且
平面
.
![]()
(1)求证:
;
(2)过
作一平面分别交
,
,
于
,
,
,若四边形
为平行四边形,求多面体
的表面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P—ABCD中,底面ABCD是菱形,PC⊥BC,点E是PC的中点,且平面PBC⊥平面ABCD.求证:
![]()
(1)求证:PA∥平面BDE;
(2)求证:平面PAC⊥平面BDE.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高中某班共有40个学生,将学生的身高分成4组:平频率/组距
,
,
,
进行统计,作成如图所示的频率分布直方图.
![]()
(1)求频率分布直方图中
的值和身高在
内的人数;
(2)求这40个学生平均身高的估计值(同一组中的数据用该组区间的中点值为代表)(精确到0.01).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
,斜率为
的直线
与x轴交于点A,与y轴交于点
,过
作x 轴的平行线,交
于点
,过
作y轴的平行线,交
于点
,再过
作x轴的平行线交
于点
,…,这样依次得线段
、
、
、
、…、
、
,记
为点
的横坐标,则
__________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是椭圆C:
上一点,点P到椭圆C的两个焦点的距离之和为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设A,B是椭圆C上异于点P的两点,直线PA与直线
交于点M,
是否存在点A,使得
?若存在,求出点A的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com