【题目】某高中某班共有40个学生,将学生的身高分成4组:平频率/组距
,
,
,
进行统计,作成如图所示的频率分布直方图.
![]()
(1)求频率分布直方图中
的值和身高在
内的人数;
(2)求这40个学生平均身高的估计值(同一组中的数据用该组区间的中点值为代表)(精确到0.01).
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn,且Sn=n(n+2)(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn
,求数列{bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
,
).
(1)当
时,若函数
在
上有两个零点,求
的取值范围;
(2)当
时,是否存在
,使得不等式
恒成立?若存在,求出
的取值集合;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着经济的快速增长、规模的迅速扩张以及人民生活水平的逐渐提高,日益剧增的垃圾给城市的绿色发展带来了巨大的压力.相关部门在有5万居民的光明社区采用分层抽样方法得到年内家庭人均
与人均垃圾清运量的统计数据如下表:
人均 | 3 | 6 | 9 | 12 | 15 |
人均垃圾清运量 | 0.13 | 0.23 | 0.31 | 0.41 | 0.52 |
![]()
(1)已知变量
与
之间存在线性相关关系,求出其回归直线方程;
(2)随着垃圾分类的推进,燃烧垃圾发电的热值大幅上升,平均每吨垃圾可折算成上网电量200千瓦时,如图是光明社区年内家庭人均
的频率分布直方图,请补全
的缺失部分,并利用(1)的结果,估计整个光明社区年内垃圾可折算成的总上网电量.
参考公式]回归方程
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,A、B分别为椭圆
的上、下顶点,若动直线l过点
,且与椭圆
相交于C、D两个不同点(直线l与y轴不重合,且C、D两点在y轴右侧,C在D的上方),直线AD与BC相交于点Q.
![]()
(1)设
的两焦点为
、
,求
的值;
(2)若
,且
,求点Q的横坐标;
(3)是否存在这样的点P,使得点Q的纵坐标恒为
?若存在,求出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知O为坐标原点,
,
,直线AG,BG相交于点G,且它们的斜率之积为
.记点G的轨迹为曲线C.
(1)若射线
与曲线C交于点D,且E为曲线C的最高点,证明:
.
(2)直线
与曲线C交于M,N两点,直线AM,AN与y轴分别交于P,Q两点.试问在x轴上是否存在定点T,使得以PQ为直径的圆恒过点T?若存在,求出T的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了治理空气污染,某市设9个监测站用于监测空气质量指数(AQI),其中在轻度污染区、中度污染区、重度污染区分别设有2、4、3个监测站,并以9个监测站测得的AQI的平均值为依据播报该市的空气质量.
(1)若某日播报的AQI为119,已知轻度污染区AQI平均值为70,中度污染区AQI平均值为115,求重试污染区AQI平均值;
(2)如图是2018年11月份30天的AQI的频率分布直方图,11月份仅有1天AQI在
内.
![]()
①某校参照官方公布的AQI,如果周日AQI小于150就组织学生参加户外活动,以统计数据中的频率为概率,求该校学生周日能参加户外活动的概率;
②环卫部门从11月份AQI不小于170的数据中抽取三天的数据进行研究,求抽取的这三天中AQI值不小于200的天数的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com