【题目】已知直线
为参数),圆
(
为参数),
(Ⅰ)当
时,求
与
的交点坐标;
(Ⅱ)过坐标原点
作
的垂线,垂足为
,
为
的中点,当
变化时,求
点轨迹的参数方程,并指出它是什么曲线.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
的参数方程为
(
为参数),以原点为极点,
轴正半轴为极轴建立极坐标系,圆
的极坐标方程为
.
(1)写出直线
的普通方程及圆
的直角坐标方程;
(2)点
是直线
上的点,求点
的坐标,使
到圆心
的距离最小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某机构为了解某市民用电情况,抽查了该市100户居民月均用电量(单位:
,以
分组的频率分布直方图如图所示.
![]()
(1)求样本中月均用电量为
的用户数量;
(2)估计月均用电量的中位数;
(3)在月均用电量为
的四组用户中,用分层抽样的方法抽取22户居民,则月均用电量为
的用户中应该抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设双曲线
(a>0,b>0)的左焦点为F1 , 左顶点为A,过F1作x轴的垂线交双曲线于P、Q两点,过P作PM垂直QA于M,过Q作QN垂直PA于N,设PM与QN的交点为B,若B到直线PQ的距离大于a+
,则该双曲线的离心率取值范围是( )
A.(1﹣
)
B.(
,+∞)
C.(1,2
)
D.(2
,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解某工厂开展群众体育活动的情况,拟采用分层抽样的方法从A,B,C三个区中抽取7个工厂进行调查,已知A,B,C区中分别有18,27,18个工厂
(Ⅰ)求从A,B,C区中分别抽取的工厂个数;
(Ⅱ)若从抽取的7个工厂中随机抽取2个进行调查结果的对比,求这2个工厂中至少有1个来自A区的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
=1(a>b>0)的离心率为
,F1、F2分别是椭圆的左、右焦点,M为椭圆上除长轴端点外的任意一点,且△MF1F2的周长为4+2
.
(1)求椭圆C的方程;
(2)过点D(0,﹣2)作直线l与椭圆C交于A、B两点,点N满足
(O为原点),求四边形OANB面积的最大值,并求此时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:
①直线AM与CC1是相交直线;②直线AM与BN是平行直线;
③直线BN与MB1是异面直线; ④直线MN与AC所成的角为60°.
其中正确的结论为___ (注:把你认为正确的结论序号都填上).
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过随机调查询问110名性别不同的高中生是否爱好某项运动,得到如下的列联表:
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由
计算得 ![]()
附表:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
参照附表,得到的正确结论是( )
A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
C.有99%以上的把握认为“爱好该项运动与性别无关”
D.有99%以上的把握认为“爱好该项运动与性别有关”
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com