【题目】已知
为函数
的导函数,且
.
(1)判断函数
的单调性;
(2)若
,讨论函数
零点的个数.
【答案】(1)
时,
单调递减,
时,
单调递增(2) 当
时,
有一个零点;当
和
或
时,
有两个零点,当
且
,
由三个零点.
【解析】试题分析:(1)首先明确
的表达式,求出
在
上单调递增,且
,从而得到
的单调区间;
(2)由
,得
或
,若
,即
,
转而判断直线
与
的交点个数即可.
试题解析:
(1)对
,求导可得
,
所以
,与是
,所以
,
所以
,
于是
在
上单调递增,注意到
,
故
时,
单调递减,
时,
单调递增.
(2)由(1)可知
,
由
,得
或
,
若
,则
,即
,
设
所以
在
上单调递增,在
上单调递减,
分析知
时,
时,
时,
,
现考虑特殊情况:
①若直线
与
相切,
设切点为
,则
,整理得
,
设
,显然
在
单调递增,
而
,故
,此时
.
![]()
②若直线
过点
,由
,则
,则
,
结合图形不难得到如下的结论:
当
时,
有一个零点;
当
和
或
时,
有两个零点,
当
且
,
由三个零点.
科目:高中数学 来源: 题型:
【题目】在某批次的某种灯泡中,随机地抽取
个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下.根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于
天的灯泡是优等品,寿命小于
天的灯泡是次品,其余的灯泡是正品.
寿命(天) | 频数 | 频率 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
合计 |
|
|
(Ⅰ)根据频率分布表中的数据,写出
,
的值.
(Ⅱ)某人从灯泡样品中随机地购买了
个,求
个灯泡中恰有一个是优等品的概率.
(Ⅲ)某人从这个批次的灯泡中随机地购买了
个进行使用,若以上述频率作为概率,用
表示此人所购买的灯泡中次品的个数,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,
为正三角形,且侧面PAB⊥底面ABCD,
为线段
的中点,
在线段
上.
![]()
(I)当
是线段
的中点时,求证:PB // 平面ACM;
(II)求证:
;
(III)是否存在点
,使二面角
的大小为60°,若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知bcos2
+acos2
=
c.
(Ⅰ)求证:a,c,b成等差数列;
(Ⅱ)若C=
,△ABC的面积为2
,求c.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com