【题目】已知圆锥曲线
的方程为
.
(
)在所给坐标系中画出圆锥曲线
.
(
)圆锥曲线
的离心率
__________.
(
)如果顶点在原点的抛物线
与圆锥曲线
有一个公共焦点
,且过第一象限,则
(i)交点
的坐标为__________.
(ii)抛物线
的方程为__________.
(iii)在图中画出抛物线
的准线.
(
)已知矩形
各顶点都在圆锥曲线
上,则矩形
面积的最大值为__________.
![]()
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是平行四边形,
,侧面
底面
,
,
,
分别为
的中点,点
在线段
上.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)如果直线
与平面
所成的角和直线
与平面
所成的角相等,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形
是直角梯形,
,
,
,
,又
,
,
,直线
与直线
所成的角为
.
![]()
(1)求证:平面
平面
;
(2)(文科)求三棱锥
的体积.
(理科)求二面角
平面角正切值的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.点E是CD边的中点,点F,G分别在线段AB,BC上,且AF=2FB,CG=2GB.
![]()
(1)证明:PE⊥FG;
(2)求二面角PADC的正切值;
(3)求直线PA与直线FG所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,直线![]()
(1)若直线
与圆
相交于两点
,弦长
等于
,求
的值;
(2)已知点
,点
为圆心,若在直线
上存在定点
(异于点
),满足:对于圆
上任一点
,都有
为一常数,试求所有满足条件的点
的坐标及改常数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量
(小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量
(百斤)与使用某种液体肥料
(千克)之间对应数据为如图所示的折线图.
(1)依据数据的折线图,是否可用线性回归模型拟合
与
的关系?请计算相关系数
并加以说明(精确到0.01).(若
,则线性相关程度很高,可用线性回归模型拟合)
(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量
限制,并有如下关系:
周光照量 |
|
|
|
光照控制仪最多可运行台数 | 3 | 2 | 1 |
若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值.
![]()
附:相关系数公式
,参考数据
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体
的棱长为 1,
为
的中点,
为线段
上的动点,过点A、P、Q的平面截该正方体所得的截面记为
.则下列命题正确的是__________(写出所有正确命题的编号).
①当
时,
为四边形;②当
时,
为等腰梯形;③当
时,
为六边形;④当
时,
的面积为
.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com