【题目】若△ABC的内角A,B,C的对边分别为a,b,c,已知c=2,C=
.
(1)若b=
,求角B;
(2)若sinC+sin(B﹣A)=2sin2A,求△ABC的面积.
【答案】
(1)解:c=2,C=
.b=
,
由正弦定理:得
,
可得sinB=
,
∵0<B<120°,
∴B=45°.
(2)解:由sinC=sin(A+B),
∴sinC+sin(B﹣A)=2sin2A,即sin(A+B)+sin(B﹣A)=2sin2A,
可得:2sinBcosA=4sinAcosA,即cosA(sinB﹣2sinA)=0,
∴cosA=0或sinB=2sinA,
当cosA=0时,
A=
,
∵C=
.
∴B=
,
△ABC的面积S=
;
当sinB=2sinA,即b=2a时,
由余弦定理:c2=a2+b2﹣2abcosC.
可得:ab=
,
△ABC的面积S=
absinC=
;
【解析】(1)由正弦定理直接求解B的大小.(2)利用三角形内角和定理,消去C,利用和与差公式打开,化简可得A与B的关系,即可求解.
科目:高中数学 来源: 题型:
【题目】在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且
a=2csinA
(1)确定角C的大小;
(2)若c=
,且△ABC的面积为
,求a+b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}为等差数列,a1=2,{an}的前n项和为Sn , 数列{bn}为等比数列,且a1b1+a2b2+a3b3+…+anbn=(n﹣1)2n+2+4对任意的n∈N*恒成立.
(1)求数列{an}、{bn}的通项公式;
(2)是否存在非零整数λ,使不等式sin
<
对一切n∈N*都成立?若存在,求出λ的值;若不存在,说明理由.
(3)各项均为正整数的无穷等差数列{cn},满足c39=a1007 , 且存在正整数k,使c1 , c39 , ck成等比数列,若数列{cn}的公差为d,求d的所有可能取值之和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),a>0,且a≠1. (Ⅰ)若3是关于x的方程f(x)﹣g(x)=0的一个解,求t的值;
(Ⅱ)当0<a<1且t=1时,解不等式f(x)≤g(x);
(Ⅲ)若函数F(x)=af(x)+tx2﹣2t+1在区间(﹣1,3]上有零点,求t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某石化集团获得了某地深海油田区块的开发权,集团在该地区随机初步勘探了部分几口井,取得了地质资料,进入全面勘探时期后,集团按网络点来布置井位进行全面勘探,由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见如表:
![]()
(参考公式和计算结果:
,
,
,
)
(1)1~6号井位置线性分布,借助前5组数据(坐标
)求得回归直线方程为
,求
的值,并估计
的预报值;
(2)现准备勘探新井
,若通过1,3,5,7号并计算出的(
,
精确到0.01),设
,
,当
均不超过10%时,使用位置最接近的已有旧井
,否则在新位置打开,请判断可否使用旧井?
(3)设出油量与勘探深度的比值
不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数
的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列向量组中能作为表示它们所在平面内所有向量的基底的是( )
A.
=(0,0),
=(1,﹣2)
B.
=(﹣1,2),
=(2,﹣4)
C.
=(3,5),
=(6,10)
D.
=(2,﹣3),
=(6,9)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于平面向量
,
,
,下列结论正确的个数为( ) ①若
=
,则
=
;
②若
=(1,k),
=(﹣2,6),
∥
,则k=﹣3;
③非零向量
和
满足|
|=|
|=|
﹣
|,则
与
+
的夹角为30°;
④已知向量
,且
与
的夹角为锐角,则实数λ的取值范围是
.
A.4个
B.3个
C.2个
D.1个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 满足Sn=
an﹣n(t>0且t≠1,n∈N*)
(1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式(用t,n表示)
(2)当t=2时,令cn=
,证明
≤c1+c2+c3+…+cn<1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知梯形CEPD如图(1)所示,其中PD=8,CE=6,A为线段PD的中点,四边形ABCD为正方形,现沿AB进行折叠,使得平面PABE⊥平面ABCD,得到如图(2)所示的几何体.已知当点F满足
=
(0<λ<1)时,平面DEF⊥平面PCE,则λ的值为( ) ![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com