【题目】已知
的两个顶点
的坐标分别为
,
,且
所在直线的斜率之积等于
,记顶点
的轨迹为
.
(Ⅰ)求顶点
的轨迹
的方程;
(Ⅱ)若直线
与曲线
交于
两点,点
在曲线
上,且
为
的重心(
为坐标原点),求证:
的面积为定值,并求出该定值.
科目:高中数学 来源: 题型:
【题目】已知
,
分别为双曲线![]()
![]()
的左、右焦点,点P是以
为直径的圆与C在第一象限内的交点,若线段
的中点Q在C的渐近线上,则C的两条渐近线方程为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)
为曲线
上的动点,点
在线段
上,且满足
,求点
的轨迹
的直角坐标方程;
(2)设点
的极坐标为
,点
在曲线
上,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,以
为极点,
轴正半轴为极轴建立极坐标系,已知曲线
的参数方程为
(
为参数,
),曲线
的极坐标方程为:
.且两曲线
与
交于
两点.
(1)求曲线
的直角坐标方程;
(2)设
,若
成等比数列,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,点
,
是圆上一动点,点
在线段
上,点
在半径
上,且满足
.
(1)当
在圆上运动时,求点
的轨迹
的方程;
(2)设过点
的直线
与轨迹
交于点
(
不在
轴上),垂直于
的直线交
于点
,与
轴交于点
,若
,求点
横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在椭圆
上任取一点
(
不为长轴端点),连结
、
,并延长与椭圆
分别交于点
、
两点,已知
的周长为8,
面积的最大值为
.
(1)求椭圆
的方程;
(2)设坐标原点为
,当
不是椭圆的顶点时,直线
和直线
的斜率之积是否为定值?若是定值,请求出这个定值;若不是定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在菱形
中,![]()
沿对角线
将△
折起,使
之间的距离为
若
分别为线段
上的动点
![]()
(1)求线段
长度的最小值;
(2)当线段
长度最小时,求直线
与平面
所成角的正弦值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),在以坐标原点为极点,
轴的正半轴为极轴的极坐标系中,直线
的极坐标方程为
.
(1)若直线
与曲线
至多只有一个公共点,求实数
的取值范围;
(2)若直线
与曲线
相交于
,
两点,且
,
的中点为
,求点
的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
为参数),在以坐标原点
为极点,
轴的正半轴为极轴的极坐标系中,点
的极坐标为
,直线
的极坐标方程为
.
(1)求直线
的直角坐标方程与曲线
的普通方程;
(2)若
是曲线
上的动点,
为线段
的中点,求点
到直线
的距离的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com