【题目】已知f(x)=
.
(1)若f(x)>k的解集为{x|x<﹣3或x>﹣2},求k的值;
(2)若对任意x>0,f(x)≤t恒成立,求实数t的取值范围.
科目:高中数学 来源: 题型:
【题目】已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在平行于OA的直线
,使得直线
与椭圆C有公共点,且直线OA与
的距离等于4?若存在,求出直线
的方程;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥D﹣ABC中,已知△BCD是正三角形,平面ABC⊥平面BCD,AB=BC=a,AC=
a,E为BC的中点,F在棱AC上,且AF=3FC. ![]()
(1)求三棱锥D﹣ABC的体积;
(2)求证:AC⊥平面DEF;
(3)若M为DB中点,N在棱AC上,且CN=
CA,求证:MN∥平面DEF.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
:
,直线
与
圆
相切,且直线
:
与椭圆
: ![]()
相交于
两点,
为原点。
(1)若直线
过椭圆
的左焦点,且与圆
交于![]()
两点,且
,求直线
的方程;
(2)如图,若
的重心恰好在圆上,求
的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(13分)如图,椭圆
经过点
,离心率
,直线l的方程为
.
![]()
(1)求椭圆C的方程;
(2)
是经过右焦点
的任一弦(不经过点
),设直线
与直线
相交于点
,记
、
、
的斜率分别为
、
、
.问:是否存在常数
,使得
? 若存在,求
的值; 若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
,直线
经过点
与
相交于
、
两点.
![]()
(1)若
且
,求证:
必为
的焦点;
(2)设
,若点
在
上,且
的最大值为
,求
的值;
(3)设
为坐标原点,若
,直线
的一个法向量为
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某经销商从外地水产养殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如下图:
![]()
(1)记事件
为:“从这批小龙虾中任取一只,重量不超过35
的小龙虾”,求
的估计值;
(2)若购进这批小龙虾100千克,试估计这批小龙虾的数量;
(3)为适应市场需求,了解这批小龙虾的口感,该经销商将这40只小龙虾分成三个等级,如下表:
等级 | 一等品 | 二等品 | 三等品 |
重量( |
|
|
|
按分层抽样抽取10只,再随机抽取3只品尝,记
为抽到二等品的数量,求抽到二级品的期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com