精英家教网 > 高中数学 > 题目详情

【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中两种支付方式都不使用的有5人,样本中仅使用和仅使用的学生的支付金额分布情况如下:

1)从全校学生中随机抽取1人,估计该学生上个月两种支付方式都使用的概率;

2)从样本仅使用和仅使用的学生中各随机抽取1人,以表示这2人中上个月支付金额大于1000元的人数,求的分布列和数学期望;

【答案】12的分布列为:;数学期望

【解析】

1)由样本数据可得,AB两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,则AB两种支付方式都使用的人数为40人,问题得解;

2)由样本数据可得,的可能取值为012,对应的概率分别为:,进而可得的分布列和数学期望.

1)由样本数据可得:

从全校所有的1000名学生中随机抽取的100人中:AB两种支付方式都不使用的有5人,

仅使用A的有30人,仅使用B的有25人,

AB两种支付方式都使用的人数为:

从全校学生中随机抽取1人,估计该学生上个月两种支付方式都使用的概率:

2)从样本仅使用和仅使用的学生中各随机抽取1人,以表示这2人中上个月支付金额大于1000元的人数,

的可能取值为0,1,2,

由样本数据可得:

的分布列为:

数学期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学的十佳校园歌手有6名男同学,4名女同学,其中3名来自1班,其余7名来自其他互不相同的7个班,现从10名同学中随机选择3名参加文艺晚会,则选出的3名同学来自不同班级的概率为_____,设X为选出3名同学中女同学的人数,则该变量X的数学期望为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在三棱锥

1)求证:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】祖冲之是中国南北朝时期的数学家和天文学家,他在数学方面的突出贡献是将圆周率的精确度计算到小数点后第位,也就是之间,这一成就比欧洲早了多年,我校爱数学社团的同学,在祖冲之研究圆周率的方法启发下,自制了一套计算圆周率的数学实验模型.该模型三视图如图所示,模型内置一个与其各个面都相切的球,该模型及其内球在同一方向有开口装置.实验的时候,同学们随机往模型中投掷大小相等,形状相同的玻璃球,通过计算落在球内的玻璃球数量,来估算圆周率的近似值.已知某次实验中,某同学一次投掷了个玻璃球,请你根据祖冲之的圆周率精确度(取小数点后三位)估算落在球内的玻璃球数量(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2021年起,新高考科目设置采用模式,普通高中学生从高一升高二时将面临着选择物理还是历史的问题,某校抽取了部分男、女学生调查选科意向,制作出如右图等高条形图,现给出下列结论:

①样本中的女生更倾向于选历史;

②样本中的男生更倾向于选物理;

③样本中的男生和女生数量一样多;

④样本中意向物理的学生数量多于意向历史的学生数量.

根据两幅条形图的信息,可以判断上述结论正确的有(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二项式的二项式系数和为256.

(1)求展开式中二项式系数最大的项;

(2)求展开式中各项的系数和;

(3)展开式中是否有有理项,若有,求系数;若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电子元件生产厂家新引进一条产品质量检测线,现对检测线进行上线的检测试验:从装有个正品和个次品的同批次电子元件的盒子中随机抽取出个,再将电子元件放回.重复次这样的试验,那么取出的个电子元件中有个正品,个次品的结果恰好发生次的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程和曲线的直角坐标方程;

2)若曲线交于两点,是曲线上的动点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),在以坐标原点为极点,以轴正半轴为极轴的极坐标中,圆的方程为

(1)写出直线的普通方程和圆的直角坐标方程;

(2)若点的坐标为,圆与直线交于两点,求的值.

查看答案和解析>>

同步练习册答案