【题目】已知
为数列
的前
项和,
,
,若关于正整数
的不等式
的解集中的整数解有两个,则正实数
的取值范围为( )
A.
B.
C.
D. ![]()
【答案】A
【解析】分析:由2Sn=(n+1)an,n≥2时,2Sn﹣1=nan﹣1,则2an=2(Sn﹣Sn﹣1),整理得:
,则
,可得:an=n.不等式an2﹣tan≤2t2,化为:(n﹣2t)(n+t)≤0,t>0,0<n≤2t,关于正整数n的不等式an2﹣tan≤2t2的解集中的整数解有两个,即可得出正实数t的取值范围.
详解:∵a1=1,2Sn=(n+1)an,
∴n≥2时,2Sn﹣1=nan﹣1,
∴2an=2(Sn﹣Sn﹣1)=(n+1)an﹣nan﹣1,整理得:
,
∴![]()
∴an=n.
不等式an2﹣tan≤2t2,化为:(n﹣2t)(n+t)≤0,t>0,
∴0<n≤2t,
关于正整数n的不等式an2﹣tan≤2t2的解集中的整数解有两个,
可知n=1,2.
∴1≤t<
,
故答案为:A.
科目:高中数学 来源: 题型:
【题目】已知在等比数列{an}中,
=2,,
=128,数列{bn}满足b1=1,b2=2,且{
}为等差数列.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在锐角
中,
、
、
分别为角
、
、
所对的边,且
.
(
)确定角
的大小.
(
)若
,且
的面积为
,求
的值.
【答案】(
)
;(
)![]()
【解析】试题分析:(1)由正弦定理可知,
,所以
;(2)由题意,
,
,得到
.
试题解析:
(
)
,∴
,
∵
,∴
.
(
)
,
,
,
∴
.
【题型】解答题
【结束】
17
【题目】已知等差数列
满足:
,
.
的前n项和为
.
(Ⅰ)求
及
;
(Ⅱ)若
,
(
),求数列
的前
项和
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,
,点
满足
,记点
的轨迹为
.
(1)求轨迹
的方程;
(2)若直线
过点
且与轨迹
交于
、
两点.
(i)无论直线
绕点
怎样转动,在
轴上总存在定点
,使
恒成立,求实数
的值.
(ii)在(i)的条件下,求
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形
的边长为
,已知
,将
沿
边折起,折起后
点在平面
上的射影为
点,则翻折后的几何体中有如下描述:
①
与
所成角的正切值是
;
②
;
③
是
;
④平面
平面
;
⑤直线
与平面
所成角为30°.
![]()
其中正确的有________.(填写你认为正确的序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com