【题目】已知双曲线过点(3,-2)且与椭圆4x2+9y2=36有相同的焦点.
(1)求双曲线的标准方程;
(2)若点M在双曲线上,F1,F2为左、右焦点,且|MF1|+|MF2|=6
,试判别△MF1F2的形状.
【答案】(1)
; (2)钝角三角形.
【解析】
(1)设双曲线方程为
,由题得
且c=
,解方程组即得双曲线的标准方程.(2) 不妨设M点在右支上,则有|MF1|-|MF2|=2
,求得|MF1|=4
,|MF2|=2
,|F1F2|=2
,再利用余弦定理判定△MF1F2为钝角三角形.
(1)椭圆方程可化为
,焦点在x轴上,且c=
,
故设双曲线方程为
,
则有
解得a2=3,b2=2.
所以双曲线的标准方程为
.
(2)不妨设M点在右支上,
则有|MF1|-|MF2|=2
,
又|MF1|+|MF2|=6
,
故解得|MF1|=4
,|MF2|=2
,
又|F1F2|=2
,
因此在△MF1F2中,|MF1|边最长,而
cos ∠MF2F1=
,
所以∠MF2F1为钝角,故△MF1F2为钝角三角形.
科目:高中数学 来源: 题型:
【题目】已知椭圆
与x轴负半轴交于
,离心率
.
(1)求椭圆C的方程;
(2)设直线
与椭圆C交于
两点,连接AM,AN并延长交直线x=4于
两点,若
,直线MN是否恒过定点,如果是,请求出定点坐标,如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年全国“两会”,即中华人民共和国第十三届全国人大二次会议和中国人民政治协商会议第十三届全国委员会第二次会议,分别于2019年3月5日和3月3日在北京召开.为了了解哪些人更关注“两会”,某机构随机抽取了年龄在15~75岁之间的200人进行调查,并按年龄绘制的频率分布直方图如下图所示,把年龄落在区间[15,35)和[35,75]内的人分别称为“青少年人”和“中老年人”.经统计“青少年人”和“中老年人”的人数之比为19:21.其中“青少年人”中有40人关注“两会”,“中老年人”中关注“两会”和不关注“两会”的人数之比是2:1.
![]()
(Ⅰ)求图中
的值;
(Ⅱ)现采用分层抽样在[25,35)和[45,55)中随机抽取8名代表,从8人中任选2人,求2人中至少有1个是“中老年人”的概率是多少?
(Ⅲ)根据已知条件,完成下面的2×2列联表,并根据此统计结果判断:能否有99.9%的把握认为“中老年人”比“青少年人”更加关注“两会”?
关注 | 不关注 | 合计 | |
青少年人 | |||
中老年人 | |||
合计 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
,定义椭圆
的“相关圆”方程为
.若抛物线
的焦点与椭圆
的一个焦点重合,且椭圆
短轴的一个端点和其两个焦点构成直角三角形.
(1)求椭圆
的方程和“相关圆”
的方程;
(2)过“相关圆”
上任意一点
的直线
与椭圆
交于
两点.
为坐标原点,若
,证明原点
到直线
的距离是定值,并求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1
(1)求曲线C的方程.
(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有
?若存在,求出m的取值范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C过定点
,且与直线
相切,圆心C的轨迹为E,曲线E与直线l:
(
)相交于A,B两点.
(1)求曲线E的方程;
(2)当
的面积等于
时,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的长轴长为4,左、右顶点分别为
,经过点
的动直线与椭圆
相交于不同的两点
(不与点
重合).
(1)求椭圆
的方程及离心率;
(2)求四边形
面积的最大值;
(3)若直线
与直线
相交于点
,判断点
是否位于一条定直线上?若是,写出该直线的方程. (结论不要求证明)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com