【题目】如图
是直三棱柱,底面
是等腰直角三角形,且
,直三棱柱的高等于4,线段
的中点为
,线段
的中点为
,线段
的中点为
.
(1)求异面直线
、
所成角的大小;
(2)求三棱锥
的体积.
![]()
科目:高中数学 来源: 题型:
【题目】某经销商从外地水产养殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如下图:
![]()
(1)记事件
为:“从这批小龙虾中任取一只,重量不超过35
的小龙虾”,求
的估计值;
(2)若购进这批小龙虾100千克,试估计这批小龙虾的数量;
(3)为适应市场需求,了解这批小龙虾的口感,该经销商将这40只小龙虾分成三个等级,如下表:
等级 | 一等品 | 二等品 | 三等品 |
重量( |
|
|
|
按分层抽样抽取10只,再随机抽取3只品尝,记
为抽到二等品的数量,求抽到二级品的期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】本市某玩具生产公司根据市场调查分析,决定调整产品生产方案,准备每天生产
,
,
三种玩具共100个,且
种玩具至少生产20个,每天生产时间不超过10小时,已知生产这些玩具每个所需工时(分钟)和所获利润如表:
玩具名称 |
|
|
|
工时(分钟) | 5 | 7 | 4 |
利润(元) | 5 | 6 | 3 |
(Ⅰ)用每天生产
种玩具个数
与
种玩具
表示每天的利润
(元);
(Ⅱ)怎样分配生产任务才能使每天的利润最大,最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
.
(1)用定义证明函数f(x)在(﹣∞,+∞)上为减函数;
(2)若x∈[1,2],求函数f(x)的值域;
(3)若g(x)=
,且当x∈[1,2]时g(x)≥0恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的上、下焦点分别为
,上焦点
到直线 4x+3y+12=0的距离为3,椭圆C的离心率e=
.
(I)若P是椭圆C上任意一点,求
的取值范围;
(II)设过椭圆C的上顶点A的直线
与椭圆交于点B(B不在y轴上),垂直于
的直线与
交于点M,与
轴交于点H,若
,且
,求直线
的方程.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+2bx+5(b∈R).
(1)若b=2,试解不等式f(x)<10;
(2)若f(x)在区间[﹣4,﹣2]上的最小值为﹣11,试求b的值;
(3)若|f(x)﹣5|≤1在区间(0,1)上恒成立,试求b的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com