【题目】我们知道,地球上的水资源有限,爱护地球、节约用水是我们每个人的义务与责任.某市政府为了对自来水的使用进行科学管理,节约水资源,计划确定一个家庭年用水量的标准.为此,对全市家庭日常用水量的情况进行抽样抽查,获得了
个家庭某年的用水量(单位:立方米),统计结果如下表及图所示.
![]()
分组 | 频数 | 频率 |
| 25 | |
| 0.19 | |
| 50 | |
| 0.23 | |
| 0.18 | |
| 5 |
(1)分别求出
,
的值;
(2)若以各组区间中点值代表该组的取值,试估计全市家庭年均用水量;
(3)从样本中年用水量在
(单位:立方米)的5个家庭中任选3个,作进一步的跟踪研究,求年用水量最多的家庭被选中的概率(5个家庭的年用水量都不相等).
科目:高中数学 来源: 题型:
【题目】若数列
满足
,且
,则
①数列
是等比数列;
②满足不等式:![]()
③若函数
在R上单调递减,则数列
是单调递减数列;
④存在数列
中的连续三项,能组成三角形的三条边;
⑤满足等式:
.
正确的序号是________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,曲线
的参数方程为
(
为参数,
),已知直线
的方程为
.
(1)设
是曲线
上的一个动点,当
时,求点
到直线
的距离的最小值;
(2)若曲线
上的所有点均在直线
的右下方,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知以
为首项的数列
满足:![]()
(1)当
,
时,求数列
的通项公式;
(2)当
,
时,试用
表示数列
前100项的和
;
(3)当
(
是正整数),
,正整数
时,判断数列
,
,
,
是否成等比数列?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《朗读者》是一档文化情感类节目,以个人成长、情感体验、背景故事与传世佳作相结合的方式,选用精美的文字,用最平实的情感读出文字背后的价值,深受人们的喜爱.为了了解人们对该节目的喜爱程度,某调查机构随机调查了
,
两个城市各100名观众,得到下面的列联表.
非常喜爱 | 喜爱 | 合计 | |
| 60 | 100 | |
| 30 | ||
合计 | 200 |
完成上表,并根据以上数据,判断是否有
的把握认为观众的喜爱程度与所处的城市有关?
附参考公式和数据:
(其中
).
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降低物流成本,已知购买x台机器人的总成本p(x)=
万元.
(1)若使每台机器人的平均成本最低,问应买多少台?
(2)现按(1)中的数量购买机器人,需要安排m人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣,经实验知,每台机器人的日平均分拣量q(m)=
(单位:件),已知传统人工分拣每人每日的平均分拣量为1200件,问引进机器人后,日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少百分之几?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的图象在点
处的切线为
,若函数
满足
(其中
为函数
的定义域,当
时,
恒成立,则称
为函数
的“转折点”,已知函数
在区间
上存在一个“转折点”,则
的取值范围是
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com