分析 (Ⅰ)由椭圆的离心率求得a=$\sqrt{2}$c,且丨F1F2丨=丨PF2丨,利用勾股定理即可求得c及a和b的值;
(Ⅱ)将直线代入椭圆方程,利用直线的斜率公式求得${k}_{{F}_{1}M}$=$\frac{k{x}_{1}+m}{{x}_{1}-1}$,${k}_{{F}_{1}N}$=$\frac{k{x}_{2}+m}{{x}_{2}-1}$,由${k}_{{F}_{1}M}$+${k}_{{F}_{1}N}$=0,结合韦达定理,即可求得m=-2k.则直线MN过定点,该定点的坐标为(2,0).
解答 解:(Ⅰ)由椭圆C的离心率e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,则a=$\sqrt{2}$c,
椭圆C的左、右焦点分别为F1(-c,0),F2(c,0),又点F2在线段PF1的中垂线上
∴丨F1F2丨=丨PF2丨,∴(2c)2=($\sqrt{3}$)2+(2-c)2,解得:c=1,
则a=$\sqrt{2}$,b2=a2-c2=1,
∴椭圆的方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(Ⅱ)证明:由题意,知直线MN存在斜率,设其方程为y=kx+m
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{y=kx+m}\end{array}\right.$消去y,得(2k2+1)x2+4kmx+2m2-2=0.
设M(x1,y1)、N(x2,y2),则x1+x2=-$\frac{4km}{2{k}^{2}+1}$,x1x2=$\frac{2{m}^{2}-2}{2{k}^{2}+1}$,
且${k}_{{F}_{1}M}$=$\frac{k{x}_{1}+m}{{x}_{1}-1}$,${k}_{{F}_{1}N}$=$\frac{k{x}_{2}+m}{{x}_{2}-1}$
由已知α+β=π,得${k}_{{F}_{1}M}$+${k}_{{F}_{1}N}$=0,即$\frac{k{x}_{1}+m}{{x}_{1}-1}$+$\frac{k{x}_{2}+m}{{x}_{2}-1}$=0,
化简,得2kx1x2+(m-k)(x1+x2)-2m=0,
∴2k×$\frac{2{m}^{2}-2}{2{k}^{2}+1}$-(m-k)($\frac{4km}{2{k}^{2}+1}$)-2m.整理得m=-2k.
∴直线MN的方程为y=k(x-2),
∴直线MN过定点,该定点的坐标为(2,0).
点评 本题考查椭圆的标准方程及离心率公式,考查直线与椭圆的位置关系,考查韦达定理,直线的斜率公式,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3π}{4}$ | B. | $\frac{π}{4}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=1,g(x)=x0 | B. | f(x)=x2,g(x)=(x+1)2 | ||
| C. | f(x)=x,g(x)=elnx | D. | f(x)=|x|,g(x)=$\left\{\begin{array}{l}{x,}&{x≥0}\\{-x,}&{x<0}\end{array}\right.$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com