【题目】已知函数
.
(1)讨论函数
的单调性;
(2)若
,对任意
,不等式
恒成立,求实数
的取值范围.
【答案】(1)答案不唯一,见解析;(2) ![]()
【解析】
(1)先由题意得到定义域,对函数求导,分别讨论
和
两种情况,即可得出结果;
(2)因为
,由(1)得到函数
在
上单调递增,不妨设
,则
可化为
,令
,则
为
上的减函数,对
求导,根据函数
单调性,即可得出结果.
(1)∵依题意可知:函数
的定义域为
,
∴
,
当
时,
在
恒成立,所以
在
上单调递增.
当
时,由
得
;由
得
;
综上可得当
时,
在
上单调递增;
当
时,
在
上单调递减;在
上单调递增.
(2)因为
,由(1)知,函数
在
上单调递增,
不妨设
,则
,
可化为
,
设
,则
,
所以
为
上的减函数,
即
在
上恒成立,等价于
在
上恒成立,
设
,所以
,
因
,所以
,所以函数
在
上是增函数,
所以
(当且仅当
时等号成立)
所以
.
科目:高中数学 来源: 题型:
【题目】定义:若函数
对任意的
,都有
成立,则称
为
上的“淡泊”函数.
(1)判断
是否为
上的“淡泊”函数,说明理由;
(2)是否存在实数
,使
为
上的“淡泊”函数,若存在,求出
的取值范围;不存在,说明理由;
(3)设
是
上的“淡泊”函数(其中
不是常值函数),且
,若对任意的
,都有
成立,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种植基地将编号分别为1,2,3,4,5,6的六个不同品种的马铃薯种在如图所示的
A | B | C | D | E | F |
这六块实验田上进行对比试验,要求这六块实验田分别种植不同品种的马铃薯,若种植时要求编号1,3,5的三个品种的马铃薯中至少有两个相邻,且2号品种的马铃薯不能种植在A、F这两块实验田上,则不同的种植方法有 ( )
A. 360种 B. 432种 C. 456种 D. 480种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知函数f(x)=
,其中a>0.
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)若在区间
上,f(x)>0恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于正三角形
,挖去以三边中点为顶点的小正三角形,得到一个新的图形,这样的过程称为一次“镂空操作“,设
是一个边长为1的正三角形,第一次“镂空操作”后得到图1,对剩下的3个小正三角形各进行一次“镂空操作”后得到图2,对剩下的小三角形重复进行上述操作,设
是第
次挖去的小三角形面积之和(如
是第1次挖去的中间小三角形面积,
是第2次挖去的三个小三角形面积之和),
是前
次挖去的所有三角形的面积之和,则
( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是矩形,
平面
,
,点
、
分别在线段
、
上,且
,其中
,连接
,延长
与
的延长线交于点
,连接
.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)若
时,求二面角
的正弦值;
(Ⅲ)若直线
与平面
所成角的正弦值为
时,求
值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面直角坐标系xOy,在x轴的正半轴上,依次取点
,
,
,
,并在第一象限内的抛物线
上依次取点
,
,
,
,
,使得
都为等边三角形,其中
为坐标原点,设第n个三角形的边长为
.
⑴求
,
,并猜想
不要求证明);
⑵令
,记
为数列
中落在区间
内的项的个数,设数列
的前m项和为
,试问是否存在实数
,使得
对任意
恒成立?若存在,求出
的取值范围;若不存在,说明理由;
⑶已知数列
满足:
,数列
满足:
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱
中,
,
,已知G与E分别为
和
的中点,D和F分别为线段AC和AB上的动点(不包括端点),若
,则线段DF的长度的平方取值范围为( ).
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com