【题目】已知点
,点
在
轴负半轴上,以
为边做菱形
,且菱形
对角线的交点在
轴上,设点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
,其中
,作曲线
的切线,设切点为
,求
面积的取值范围.
科目:高中数学 来源: 题型:
【题目】已知椭圆
过点
,其左、右两个焦点分别为
,
,短轴的一个端点为
,且
.
(1)求
的平分线所在的直线方程;
(2)设直线
:
与椭圆交于不同的两点
,
.且
为坐标原点,若
,求
的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】写算,是一种格子乘法,也是笔算乘法的一种,用以区别筹算与珠算,它由明代数学家吴敬在其撰写的《九章算法比类大全》一书中提出,是从天元式的乘法演变而来.例如计算
,将被乘数89计入上行,乘数65计入右行.然后以乘数65的每位数字乘被乘数89的每位数字,将结果计入相应的格子中,最后从右下方开始按斜行加起来,满十向上斜行进一,如图,即得5785.类比此法画出
的表格,若从表内(表周边数据不算在内)任取一数,则恰取到奇数的概率是( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间
内,其频率分布直方图如图.
![]()
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间
的参赛者中,利用分层抽样的方法随机抽取
人参加学校座谈交流,那么从得分在区间
与
各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的
人中,选出
人参加全市座谈交流,设
表示得分在区间
中参加全市座谈交流的人数,求
的分布列及数学期望E(X).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,已知点
,
,动点
满足直线
与
的斜率之积为
.记
的轨迹为曲线
.以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求
和
的直角坐标方程;
(2)求
上的点到
距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,墙上有一壁画,最高点
离地面4米,最低点
离地面2米,观察者从距离墙
米,离地面高
米的
处观赏该壁画,设观赏视角![]()
![]()
(1)若
问:观察者离墙多远时,视角
最大?
(2)若
当
变化时,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com