精英家教网 > 高中数学 > 题目详情

【题目】若定义在R上的函数f(x)满足:
①对任意x,y∈R,都有:f(x+y)=f(x)+f(y)﹣1;
②当x<0时,f(x)>1.
(Ⅰ)试判断函数f(x)﹣1的奇偶性;
(Ⅱ)试判断函数f(x)的单调性;
(Ⅲ)若不等式f(a2﹣2a﹣7)+ >0的解集为{a|﹣2<a<4},求f(5)的值.

【答案】解:(Ⅰ)令y=﹣x,f(0)=f(x)+f(﹣x)﹣1x=y=0得f(0)=1
即f(﹣x)﹣1=﹣[f(x)﹣1],
∴f(x)﹣1是奇函数.
(Ⅱ)任取x1 , x2∈(﹣∞,+∞)且x1<x2 , 则f(x2)﹣f(x1)=f[(x2﹣x1)+x1]﹣f(x1)=f(x2﹣x1)+f(x1)﹣1﹣f(x1)=f(x2﹣x1)﹣1
又x1﹣x2<0.则f(x1﹣x2)>1,
∴f(x1﹣x2)﹣1>0,
∴f(x2)﹣f(x1)<0
即:f(x2)<f(x1).
∴f(x)在(﹣∞,∞)上单调递减.
(Ⅲ) 由(Ⅱ)知:a2﹣2a﹣7<m的解集为(﹣2,4),
∴m=1.即:
∴f(2)=﹣2f(4)=﹣5
【解析】(Ⅰ)令y=﹣x,f(0)=f(x)+f(﹣x)﹣1x=y=0得f(0)=1,再由函数奇偶性的定义验证f(﹣x)﹣1与﹣[f(x)﹣1]的关系,即可;(Ⅱ)任取x1 , x2∈(﹣∞,+∞)且x1<x2 , 求f(x2)﹣f(x1)的差的符号,有定义法判断出单调性;(Ⅲ)由题设,将 ,再由单调性得出不等式,求出参数,再求函数值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)短轴的两个顶点与右焦点的连线构成等边三角形,椭圆C上任意一点到椭圆左右两个焦点的距离之和为4.
(1)求椭圆C的方程;
(2)椭圆C与X轴负半轴交于点A,直线过定点(﹣1,0)交椭圆于M,N两点,求△AMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知椭圆的右焦点为椭圆与双曲线两条渐近线的四个交点为顶点的四边形的面积为

(1)求椭圆的方程;

(2)若点为椭圆上的两点(不同时在轴上),点,证明:存在实数,当三点共线时,为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 为正方形, 为直角梯形, ,平面平面,且.

(1)若延长交于点,求证: 平面

(2)若边上的动点,求直线与平面所成角正弦值的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在图中,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有 . (填上所有正确答案的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z1= +(a2﹣3)i,z2=2+(3a+1)i(a∈R,i是虚数单位).
(1)若复数z1﹣z2在复平面上对应点落在第一象限,求实数a的取值范围;
(2)若虚数z1是实系数一元二次方程x2﹣6x+m=0的根,求实数m值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若sin2α= ,sin(β﹣α)= ,且α∈[ ,π],β∈[π, ],则α+β的值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】河南多地遭遇跨年霾,很多学校调整元旦放假时间,提前放假让学生们在家躲霾,郑州市根据《郑州市人民政府办公厅关于将重污染天气黄色预警升级为红色预警的通知》,自12月29日12时将黄色预警升级为红色预警,12月30日0时启动I级响应,明确要求“幼儿园、中小学等教育机构停课,停课不停学”学生和家长对停课这一举措褒贬不一,有为了健康赞成的,有怕耽误学习不赞成的,某调查机构为了了解公众对该举措的态度,随机调查采访了50人,将调查情况整理汇总成下表:

年龄(岁)

频数

5

10

15

10

5

5

赞成人数

4

6

9

6

3

4

(1)请在图中完成被调查人员年龄的频率分布直方图;

(2)若从年龄在 两组采访对象中各随机选取2人进行深度跟踪调查,选中4人中不赞成这项举措的人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣2x﹣8≤0},B={x| <0},U=R.
(1)求A∪B;
(2)求(UA)∩B;
(3)如果C={x|x﹣a>0},且A∩C≠,求a的取值范围.

查看答案和解析>>

同步练习册答案