精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,动点到点的距离和它到直线的距离相等,记点的轨迹为.

(Ⅰ)求得方程;

(Ⅱ)设点在曲线上, 轴上一点(在点右侧)满足.平行于的直线与曲线相切于点,试判断直线是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.

【答案】(1) (2)直线过定点.

【解析】试题分析:(Ⅰ)根据抛物线的定义可得得方程;

(Ⅱ)设,则,与抛物线相切的直线为,与抛物线联立得,由,得点,进而求出直线AD的方程即可得定点.

试题解析:

(Ⅰ)因为动点到点的距离和它到直线的距离相等,

所以动点的轨迹是以点为焦点,直线为准线的抛物线.

的方程为

,即.

所以的轨迹方程为.

(Ⅱ)设,则

所以直线的斜率为.

设与平行,且与抛物线相切的直线为

所以,所以点.

,即时,直线的方程为

整理得

所以直线过点.

,即时,直线的方程为,过点

综上所述,直线过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线的焦点为,椭圆的中心在原点,为其右焦点,点为曲线在第一象限的交点,且

(1)求椭圆的标准方程;

(2)设为抛物线上的两个动点,且使得线段的中点在直线上,

为定点,求面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,求不等式的解集;

(2)若对任意,不等式的解集为空集,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数f(0)0x>0

f(x).

(1)求函数f(x)的解析式;

(2)解不等式f(x21)>2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某三棱锥的三视图如图所示,则该三棱锥最长的棱的棱长为( )

A. 2 B. C. D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线y=t与曲线C:y=x(x﹣3)2的三个交点分别为A(a,t),B(b,t),C(c,t),且a<b<c.现给出如下结论:

①abc的取值范围是(0,4);

②a2+b2+c2为定值;③a+b+c=6

其中正确结论的为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为对考生的月考成绩进行分析,某地区随机抽查了名考生的成绩,根据所得数据画了如下的样本频率分布直方图.

(1)求成绩在的频率;

(2)根据频率分布直方图算出样本数据的中位数;

(3)为了分析成绩与班级、学校等方面的关系,必须按成绩再从这人中用分层抽样方法抽取出人作出进一步分析,则成绩在的这段应抽多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直角梯形 分别是边上的点沿折起并连接成如图的多面体折后

(Ⅰ)求证:

(Ⅱ)若折后直线与平面所成角的正弦值是求证平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1若不等式恒成立,则实数的取值范围;

2在(1)中, 取最小值时,设函数.若函数在区间上恰有两个零点,求实数的取值范围;

(3)证明不等式: ).

查看答案和解析>>

同步练习册答案