【题目】下列有关命题的说法正确的是( )
A.
,使得
成立.
B. 命题
:任意
,都有
,则
:存在
,使得
.
C. 命题“若
且
,则
且
”的逆命题为真命题.
D. 若数列
是等比数列,
则
是
的必要不充分条件.
科目:高中数学 来源: 题型:
【题目】某客户准备在家中安装一套净水系统,该系统为三级过滤,使用寿命为十年.如图所示,两个一级过滤器采用并联安装,二级过滤器与三级过滤器为串联安装。
![]()
其中每一级过滤都由核心部件滤芯来实现。在使用过程中,一级滤芯和二级滤芯都需要不定期更换(每个滤芯是否需要更换相互独立),三级滤芯无需更换,若客户在安装净水系统的同时购买滤芯,则一级滤芯每个
元,二级滤芯每个
元.若客户在使用过程中单独购买滤芯,则一级滤芯每个
元,二级滤芯每个
元。现需决策安装净水系统的同时购滤芯的数量,为此参考了根据
套该款净水系统在十年使用期内更换滤芯的相关数据制成的图表,其中图是根据
个一级过滤器更换的滤芯个数制成的柱状图,表是根据
个二级过滤器更换的滤芯个数制成的频数分布表.
![]()
二级滤芯更换频数分布表
二级滤芯更换的个数 |
|
|
频数 |
|
|
以
个一级过滤器更换滤芯的频率代替
个一级过滤器更换滤芯发生的概率,以
个二级过滤器更换滤芯的频率代替
个二级过滤器更换滤芯发生的概率.
(1)求一套净水系统在使用期内需要更换的各级滤芯总个数恰好为
的概率;
(2)记
表示该客户的净水系统在使用期内需要更换的一级滤芯总数,求
的分布列及数学期望;
(3)记
,
分别表示该客户在安装净水系统的同时购买的一级滤芯和二级滤芯的个数.若
,且
,以该客户的净水系统在使用期内购买各级滤芯所需总费用的期望值为决策依据,试确定
,
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年春节档有多部优秀电影上映,其中《流浪地球》是比较火的一部.某影评网站统计了100名观众对《流浪地球》的评分情况,得到如下表格:
评价等级 | ★ | ★★ | ★★★ | ★★★★ | ★★★★★ |
分数 | 0~20 | 2140 | 4160 | 61~80 | 81100 |
人数 | 5 | 2 | 12 | 6 | 75 |
(1)根据以上评分情况,试估计观众对《流浪地球》的评价在四星以上(包括四星)的频率;
(2)以表中各评价等级对应的频率作为各评价等级对应的概率,假设每个观众的评分结果相互独立.
(i)若从全国所有观众中随机选取3名,求恰有2名评价为五星1名评价为一星的概率;
(ii)若从全国所有观众中随机选取16名,记评价为五星的人数为X,求X的方差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,直线
不过原点
且不平行于坐标轴,
与
有两个交点
,
,线段
的中点为
.证明:
(
)直线
的斜率与
的斜率的乘积为定值
.
(
)若
过点
,延长线段
与
交于点
,当四边形
为平行四边形时,则直线
的斜率
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题中真命题是
![]()
A. 同垂直于一直线的两条直线互相平行
B. 底面各边相等,侧面都是矩形的四棱柱是正四棱柱
C. 过空间任一点与两条异面直线都垂直的直线有且只有一条
D. 过球面上任意两点的大圆有且只有一个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某港口船舶停靠的方案是先到先停.
(1)若甲乙两艘船同时到达港口,双方约定各派一名代表猜拳:从
中各随机选一个数,若两数之和为奇数,则甲先停靠;若两数之和为偶数,则乙先停靠,这种对着是否公平?请说明理由.
(2)根据已往经验,甲船将于早上
到达,乙船将于早上
到达,请应用随机模拟的方法求甲船先停靠的概率,随机数模拟实验数据参考如下:记
都是
之间的均匀随机数,用计算机做了
次试验,得到的结果有
次满足
,有
次满足
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)求与椭圆
有共同焦点且过点
的双曲线的标准方程;
(2)已知抛物线的焦点在
轴上,抛物线上的点
到焦点的距离等于5,求抛物线的标准方程和
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com