【题目】已知函数
.
(1)若
,
,求
的最大值;
(2)当
时,讨论
极值点的个数.
【答案】(1)
(2)
时,
极值点的个数为0个;
时,
极值点的个数为2个
【解析】
(1)利用导数求出单调性,从而求得
的最大值;
(2)先求导数,
,导数的符号由分子
确定,先分
和
讨论,
时,易得
,当
时,将
看成关于
的二次函数,由
确定
的符号,从而判断极值点的个数.
(1)当
,
时,
,
此时,函数
定义域为
,
,
由
得:
;由
得:
,
所以
在
上单调递增,在
上单调递减.
所以
.
(2)当
时,函数
定义域为
,
,
①当
时,
对任意的
恒成立,
在
上单调递减,所以此时
极值点的个数为0个;
②当
时,设
,
(i)当
,即
时,
对任意的
恒成立,即
在
上单调递减,
所以此时
极值点的个数为0个;
(ii)当
,即
时,记方程
的两根分别为
,
,
则
,
,所以
,
都大于0,
即
在
上有2个左右异号的零点,
所以此时
极值点的个数为2.
综上所述
时,
极值点的个数为0个;
时,
极值点的个数为2个.
科目:高中数学 来源: 题型:
【题目】已知函数
将
的图象上所有点向左平移
个单位,然后纵坐标不变,横坐标缩短为原来的
,得到函数
的图象.若
为偶函数,且最小正周期为
,则( )
A.
图象与
对称B.
在
单调递增
C.
在
有且仅有3个解D.
在
有仅有3个极大值点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知x与y之间的几组数据如表:
x | 1 | 2 | 3 | 4 |
y | 1 | m | n | 4 |
如表数据中y的平均值为2.5,若某同学对m赋了三个值分别为1.5,2,2.5,得到三条线性回归直线方程分别为
,
,
,对应的相关系数分别为
,
,
,下列结论中错误的是( )
参考公式:线性回归方程
中,其中
,
.相关系数
.
A.三条回归直线有共同交点B.相关系数中,
最大
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,以原点
为极点,
轴正半轴为极轴建立极坐标系.已知直线
的极坐标方程为
,曲线
的极坐标方程为
.
(1)写出直线
和曲线
的直角坐标方程;
(2)过动点
且平行于
的直线交曲线
于
两点,若
,求动点
到直线
的最近距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长为1的正方体
中,P为线段
上的动点,下列说法正确的是( )
![]()
A.对任意点P,
平面![]()
B.三棱锥
的体积为![]()
C.线段DP长度的最小值为![]()
D.存在点P,使得DP与平面
所成角的大小为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为坐标原点,椭圆
的右焦点为
,过
的直线
与
相交于
两点,点
满足
.
(1)当
的倾斜角为
时,求直线
的方程;
(2)试探究在
轴上是否存在定点
,使得
为定值?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
的参数方程为
(
为参数),以原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的方程为
,定点
,点
是曲线
上的动点,
为
的中点.
(1)求点
的轨迹
的直角坐标方程;
(2)已知直线
与
轴的交点为
,与曲线
的交点为
,若
的中点为
,求
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次
普查,为此需要抽验1000人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.
方案①:将每个人的血分别化验,这时需要验1000次.
方案②:按
个人一组进行随机分组,把从每组
个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这
个人的血只需检验一次(这时认为每个人的血化验
次);否则,若呈阳性,则需对这
个人的血样再分别进行一次化验,这样,该组
个人的血总共需要化验
次.
假设此次普查中每个人的血样化验呈阳性的概率为
,且这些人之间的试验反应相互独立.
(1)设方案②中,某组
个人的每个人的血化验次数为
,求
的分布列;
(2)设
,试比较方案②中,
分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案①,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com