【题目】在平面直角坐标系
中,曲线
参数方程为
为参数),将曲线
上所有点的横坐标变为原来的
,纵坐标变为原来的
,得到曲线
.
(1)求曲线
的普通方程;
(2)过点
且倾斜角为
的直线
与曲线
交于
两点,求
取得最小值时
的值.
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的各项均为正数,其前
项和为
,且满足
,若数列
满足
,且等式
对任意
成立.
(1)求数列
的通项公式;
(2)将数列
与
的项相间排列构成新数列
,设该新数列为
,求数列
的通项公式和前
项的和
;
(3)对于(2)中的数列
前
项和
,若
对任意
都成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设曲线
是焦点在
轴上的椭圆,两个焦点分别是是
,
,且
,
是曲线上的任意一点,且点
到两个焦点距离之和为4.
(1)求
的标准方程;
(2)设
的左顶点为
,若直线
:
与曲线
交于两点
,
(
,
不是左右顶点),且满足
,求证:直线
恒过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cos4x+sin2x,下列结论中错误的是( )
A. f(x)是偶函数
B. 函数f(x)最小值为![]()
C.
是函数f(x)的一个周期
D. 函数f(x)在
内是减函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若数列
满足:对于任意的正整数
,
,
,且
,则称该数列为“跳级数列”.
(1)若数列
为“跳级数列”,且
,求
、
的值;
(2)若数列
为“跳级数列”,则对于任意一个大于
的质数
,在数列
中总有一项是
的倍数;
(3)若
为奇质数,则存在一个“跳级数列”
,使得数列
中每一项都不是
的倍数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某汽车公司最近研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程的测试。现对测试数据进行分析,得到如图所示的频率分布直方图:
![]()
(1)估计这100辆汽车的单次最大续航里程的平均值(同一组中的数据用该组区间的中点值代表).
(2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程
近似地服从正态分布
,经计算第(1)问中样本标准差
的近似值为50。用样本平均数
作为
的近似值,用样本标准差
作为
的估计值,现任取一辆汽车,求它的单次最大续航里程恰在250千米到400千米之间的概率.
参考数据:若随机变量服从正态分布
,则
,
,
.
(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券3万元。已知硬币出现正、反面的概率都是0.5方格图上标有第0格、第1格、第2格、…、第20格。遥控车开始在第0格,客户每掷一次硬币,遥控车向前移动一次。若掷出正面,遥控车向前移动一格(从
到
)若掷出反面遥控车向前移动两格(从
到
),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第
格的概率为P试证明
是等比数列,并求参与游戏一次的顾客获得优惠券金额的期望值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com