【题目】已知抛物线
的经过点
.
(1)求抛物线的方程;
(2)过抛物线焦点F的直线l交抛物线于A、B两点,若|AB|=8,求直线l的方程.
科目:高中数学 来源: 题型:
【题目】已知圆台侧面的母线长为
,母线与轴的夹角为
,一个底面的半径是另一个底面半径的
倍.
![]()
(1)求圆台两底面的半径;
(2)如图,点
为下底面圆周上的点,且
,求
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,CM,CN为某公园景观湖胖的两条木栈道,∠MCN=120°,现拟在两条木栈道的A,B处设置观景台,记BC=a,AC=b,AB=c(单位:百米)
![]()
(1)若a,b,c成等差数列,且公差为4,求b的值;
(2)已知AB=12,记∠ABC=θ,试用θ表示观景路线A-C-B的长,并求观景路线A-C-B长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,从参加环保知识竞赛的1200名学生中抽出
名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:
![]()
(1)
这一组的频数、频率分别是多少?
(2)估计这次环保知识竞赛的及格率。(
分及以上为及格)
(3)若准备取成绩最好的300名发奖,则获奖的最低分数约为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,随着我国汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.
![]()
图1 图2
(1)记“在
年成交的二手车中随机选取一辆,该车的使用年限在
”为事件
,试估计
的概率;
(2)根据该汽车交易市场的历史资料,得到散点图如图2,其中
(单位:年)表示二手车的使用时间,
(单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用
作为二手车平均交易价格
关于其使用年限
的回归方程,相关数据如下表(表中
,
):
|
|
|
|
|
|
5.5 | 8.7 | 1.9 | 301.4 | 79.75 | 385 |
①根据回归方程类型及表中数据,建立
关于
的回归方程;
②该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格
的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格
的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.
附注:①对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为
;
②参考数据:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在著名的汉诺塔问题中,有三根高度相同的柱子和一些大小及颜色各不相同的圆盘,三根柱子分别为起始柱、辅助柱及目标柱.已知起始柱上套有
个圆盘,较大的圆盘都在较小的圆盘下面.现把圆盘从起始柱全部移到目标柱上,规则如下:每次只能移动一个圆盘,且每次移动后,每根柱上较大的圆盘不能放在较小的圆盘上面,规定一个圆盘从任一根柱上移动到另一根柱上为一次移动.若将
个圆盘从起始柱移动到目标柱上最少需要移动的次数记为
,则
( )
![]()
A. 33B. 31C. 17D. 15
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点
为圆
:
上一动点,过点
分别作
轴,
轴的垂线,垂足分别为
,
,连接
延长至点
,使得
,点
的轨迹记为曲线
.
![]()
(1)求曲线
的方程;
(2)若点
,
分别位于
轴与
轴的正半轴上,直线
与曲线
相交于
,
两点,试问在曲线
上是否存在点
,使得四边形
为平行四边形,若存在,求出直线
方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,F是椭圆
的左焦点,椭圆的离心率为
,B为椭圆的左顶点和上顶点,点C在x轴上,
,
的外接圆M恰好与直线
:
相切.
1
求椭圆的方程;
2
过点C的直线
与已知椭圆交于P,Q两点,且
,求直线
的方程.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com