精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x≥0).
(1)若f(x)>0恒成立,求实数k的取值范围;
(2)若对任意非负实数a,b,c,以f(a),f(b),f(c)为三边都可构成三角形,求实数k的取值范围.
【答案】分析:(1)f(x)>0恒成立等价于x2+kx+1>0(x≥0)恒成立.x=0时,结论成立;x>0时,分离参数-k<x+,利用基本不等式,即可确定实数k的取值范围;
(2)f(x)=,由(1)知:k>-2,再进行分类讨论,利用以f(a),f(b),f(c)为三边都可构成三角形,即可求实数k的取值范围.
解答:解:(1)∵x2+x+1>0恒成立,∴f(x)>0恒成立等价于x2+kx+1>0(x≥0)恒成立
x=0时,结论成立;x>0时,-k<x+,∵x>0,∴x+≥2
∴-k<2
∴k>-2
(2)f(x)=
由(1)知:k>-2
1°、当k=1时,满足题意;
2°、当k>1时,,由题意知:,∴1<k<4
3°、当k<1时,,于是有,∴1>
综上,实数k的取值范围为
点评:本题考查恒成立问题,考查分类讨论的数学思想,解题的关键是正确分类,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案