精英家教网 > 高中数学 > 题目详情

已知椭圆的离心率为,两焦点之间的距离为4.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过椭圆的右顶点作直线交抛物线于A、B两点,

(1)求证:OA⊥OB;

(2)设OA、OB分别与椭圆相交于点D、E,过原点O作直线DE的垂线OM,垂足为M,证明|OM|为定值.

 

【答案】

(Ⅰ)(Ⅱ)见解析

【解析】(1)由2c=4,c/a=1/2,可求出a,进而求出b,问题解决.

(II)(1)若直线的斜率存在,可设直线方程为

然后与抛物线方程联立,消去y转化为,

借助韦达定理证明即可.

斜率不存在的情况要单独考虑.

(2) 设,直线的方程为,代入,得.于是

.可得

再证明原点到直线的距离为定值

解:(Ⅰ)由,故. ………………………3分

所以,所求椭圆的标准方程为 ……………………………4分

(Ⅱ)(1)若直线的斜率存在,可设直线方程为……………5分

代入抛物线方程整理得

设点A()点B(),则………7分

所以 ……………………………………………9分

若直线斜率不存在,则A(4,4)B(4,-4),同样可得…………10分

(2)设,直线的方程为,代入,得.于是.从而.得.∴原点到直线的距离为定值…15分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的离心率为e,两焦点分别为F1、F2,抛物线C以F1为顶点、F2为焦点,点P为抛物线和椭圆的一个交点,若e|PF2|=|PF1|,则e的值为(  )
A、
1
2
B、
2
2
C、
3
3
D、以上均不对

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的离心率为
1
2
,焦点是(-3,0),(3,0),则椭圆方程为(  )
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在由圆O:x2+y2=1和椭圆C:
x2
a2
+y2
=1(a>1)构成的“眼形”结构中,已知椭圆的离心率为
6
3
,直线l与圆O相切于点M,与椭圆C相交于两点A,B.
(1)求椭圆C的方程;
(2)是否存在直线l,使得
OA
OB
=
1
2
OM
2
,若存在,求此时直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知椭圆的离心率为
2
2
,准线方程为x=±8,求这个椭圆的标准方程;
(2)假设你家订了一份报纸,送报人可能在早上6:30-7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00-8:00之间,请你求出父亲在离开家前能得到报纸(称为事件A)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A,B是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右顶点,M是椭圆上异于A,B的任意一点,已知椭圆的离心率为e,右准线l的方程为x=m.
(1)若e=
1
2
,m=4,求椭圆C的方程;
(2)设直线AM交l于点P,以MP为直径的圆交MB于Q,若直线PQ恰过原点,求e.

查看答案和解析>>

同步练习册答案