精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
(1)若,求a的值;
(2)t>1,是否存在a∈[1,t]使得成立?并给予证明;
(3)结合定积分的几何意义说明(2)的几何意义.
【答案】分析:(1)求出原函数,可得定积分,即可求得a的值;
(2)先求出定积分,再构建函数,即可证明;
(3)连续函数f(x)在闭区间[a,b]上的定积分等于该区间上某个点x的函数值f(x)与该区间长度的积.
解答:解:(1)∵,∴…(3分)
(2)
,∴…(5分)
下面证明a∈[1,t]:
设g(t)=t-1-lnt(t>1)则
∴g(t)在(1,+∞)上为增函数,当t>1时,g(t)>g(1)=0
又∵t>1时lnt>0,∴a-1>0即a>1…(8分)

设h(t)=t-1-tlnt(t>1)则
∴h(t)在(1,+∞)上为减函数,当t>1时h(t)<h(1)=0
又∵t>1时lnt>0,∴a-t<0即a<t,∴a∈[1,t]
综上:当t>1时,存在a∈[1,t]使得成立.…(11分)
(3)连续函数f(x)在闭区间[a,b]上的定积分等于该区间上某个点x的函数值f(x)与该区间长度的积,即其中x∈[a,b]…(14分)
点评:本题考查导数知识的运用,考查定积分,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案