【题目】已知椭圆
:
的离心率为
,椭圆的四个顶点围成的四边形的面积为4.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)直线
与椭圆
交于
,
两点,
的中点
在圆
上,求
(
为坐标原点)面积的最大值.
【答案】(Ⅰ)
.
(Ⅱ)1.
【解析】试题分析:(Ⅰ)由题意知,
,得
,
,代入椭圆的方程,再由椭圆
的四个顶点围成的四边形的面积得
,求得
的值,即可得到椭圆的方程;
(Ⅱ)当直线
的斜率不存在时,得到
,
当直线
的斜率存在时,设
:
,联立方程组,求得
,求得
中点的坐标,代入圆的方程,得
,再由弦长公式和点到直线的距离公式,即可得到
的表达式,即可求解面积的最大值.
试题解析:
(Ⅰ)由题意知
,得
,
,
所以
,
由椭圆
的四个顶点围成的四边形的面积为4,得
,
所以
,
,椭圆
的标准方程为
.
(Ⅱ)当直线
的斜率不存在时,
令
,得
,
,
当直线
的斜率存在时,设
:
,
,
,
,
由
,得
,
则
,
,
所以
,
,
将
代入
,得
,
又因为
,
原点到直线
的距离
,
所以
![]()
![]()
![]()
![]()
![]()
.
当且仅当
,即
时取等号.
综上所述,
面积的最大值为1.
科目:高中数学 来源: 题型:
【题目】用合适的方法表示下列集合,并说明是有限集还是无限集.
(1)到A、B两点距离相等的点的集合
(2)满足不等式
的
的集合
(3)全体偶数
(4)被5除余1的数
(5)20以内的质数
(6)![]()
(7)方程
的解集
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,曲线
的极坐标方程为
,以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,直线
的参数方程为
(t为参数).
(1)写出曲线
的参数方程和直线
的普通方程;
(2)已知点
是曲线
上一点,,求点
到直线
的最小距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
的极坐标方程是
,以极点为原点,以极轴为
轴的正半轴,取相同的单位长度,建立平面直角坐标系,直线
的参数方程为
.
(1)写出直线
的普通方程与曲线
的直角坐标方程;
(2)设曲线
经过伸缩变换
得到曲线
,曲线
上任一点为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从2017年1月18日开始,支付宝用户可以通过“
扫‘福’字”和“参与蚂蚁森林”两种方式获得福卡(爱国福、富强福、和谐福、友善福,敬业福),除夕夜22:18,每一位提前集齐五福的用户都将获得一份现金红包.某高校一个社团在年后开学后随机调查了80位该校在读大学生,就除夕夜22:18之前是否集齐五福进行了一次调查(若未参与集五福的活动,则也等同于未集齐五福),得到具体数据如下表:
![]()
(1)根据如上的列联表,能否在犯错误的概率不超过0.05的前提下,认为“集齐五福与性别有关”?
(2)计算这80位大学生集齐五福的频率,并据此估算该校10000名在读大学生中集齐五福的人数;
(3)为了解集齐五福的大学生明年是否愿意继续参加集五福活动,该大学的学生会从集齐五福的学生中,选取2位男生和3位女生逐个进行采访,最后再随机选取3次采访记录放到该大学的官方网站上,求最后被选取的3次采访对象中至少有一位男生的概率.
参考公式:
.
附表:
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,函数
.
⑴若
的定义域为
,求实数
的取值范围;
⑵当
,求函数
的最小值
;
⑶是否存在实数
,使得函数
的定义域为
,值域为
?若存在,求出
的值;若不存在,则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在梯形
中(图1),
,
,
,过
、
分别作
的垂线,垂足分别为
、
,已知
,
,将梯形
沿
、
同侧折起,使得
,
,得空间几何体
(图2).
![]()
![]()
(1)证明:
平面
;
(2)求三棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】底面为菱形且侧棱垂直于底面的四棱柱
中,
,
分别是
,
的中点,过点
,
,
,
的平面截直四棱柱
,得到平面四边形
,
为
的中点,且
,当截面的面积取最大值时,
的值为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在
中,
,
,
所对的边分别为
,
,
,过
作直线
与边
相交于点
,
,
.当直线
时,
值为
;当
为边
的中点时,
值为
.当
,
变化时,记
(即
、
中较大的数),则
的最小值为( )
A.
B.
C.
D.1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com