【题目】2020年寒假是特殊的寒假,因为疫情全体学生只能在家进行网上在线学习,为了研究学生在网上学习的情况,某学校在网上随机抽取120名学生对于线上教育进行调查,其中男生与女生的人数之比为
,其中男生30人对于线上教育满意,女生中有15名表示对线上教育不满意.
(1)完成
列联表,并回答能否有99%的把握认为对“线上教育是否满意与性别有关”;
满意 | 不满意 | 总计 | |
男生 | |||
女生 | |||
合计 | 120 |
(2)从被调查中对线上教育满意的学生中,利用分层抽样抽取8名学生,再在8名学生中抽取2名学生,作线上学习的经验介绍,求其中抽取一名男生与一名女生的概率.
参考公式:附:![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.842 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)见解析;有99%的把握认为对“线上教育是否满意与性别有关”
(2)![]()
【解析】
(1)根据题意,填写
列联表,由公式算出
与
比较,即可得出结论;
(2)根据分层抽样,得出8人中男生人数为3人,女生人数为5人,列举出8人中抽2人所以情况,由古典概型即可算出结果.![]()
解:(1)列联表如下:
满意 | 不满意 | 总计 | |
男生 | 30 | 25 | 55 |
女生 | 50 | 15 | 65 |
合计 | 80 | 40 | 120 |
,
所以有99%的把握认为对“线上教育是否满意与性别有关”,
(2)由题知,从对线上教育满意的80人中,分层抽样抽取8人,
则:8人中,男生人数为:
人,设为
,
,
,
女生人数为:
人,设为
,
,
,
则8人中再抽取2人,有以下情况:
,
,
,共有15种,其中抽取到一名女生有:
,共有9种,
所以8人中抽取2人,抽到一名男生和一名女生的概率为:
,
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为
(m为参数),以坐标点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+
)=1.
(1)求直线l的直角坐标方程和曲线C的普通方程;
(2)已知点M (2,0),若直线l与曲线C相交于P、Q两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程是
(
为参数,
),在以坐标原点为极点,
轴的非负半轴为极轴的极坐标系中,曲线
的极坐标方程是
,等边
的顶点都在
上,且点
,
,
按照逆时针方向排列,点
的极坐标为
.
(Ⅰ)求点
,
,
的直角坐标;
(Ⅱ)设
为
上任意一点,求点
到直线
的距离的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年寒假是特殊的寒假,因为疫情全体学生只能在家进行网上在线学习,为了研究学生在网上学习的情况,某学校在网上随机抽取120名学生对线上教育进行调查,其中男生与女生的人数之比为11∶13,其中男生30人对于线上教育满意,女生中有15名表示对线上教育不满意.
(1)完成
列联表,并回答能否有99%的把握认为对“线上教育是否满意与性别有关”;
满意 | 不满意 | 总计 | |
男生 | |||
女生 | |||
合计 | 120 |
(2)从被调查中对线上教育满意的学生中,利用分层抽样抽取8名学生,再在8名学生中抽取3名学生,作线上学习的经验介绍,其中抽取男生的个数为
,求出
的分布列及期望值.
参考公式:附:![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 0.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《周髀算经》中给出了:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二节气的日影长依次成等差数列的结论.已知某地立春与雨水两个节气的日影长分别为
尺和
尺,现在从该地日影长小于
尺的节气中随机抽取
个节气进行日影长情况统计,则所选取这
个节气中恰好有
个节气的日影长小于
尺的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线
的参数方程为
(
为参数),以原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)写出直线
的极坐标方程与曲线
的直角坐标方程;
(2)已知与直线
平行的直线
过点
,且与曲线
交于
两点,试求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
.
(1)求
的单调区间;
(2)设曲线
与
轴正半轴的交点为
,曲线在点
处的切线方程为
,求证:对于任意的实数
,都有
;
(3)若方程
为实数)有两个实数根
,
,且
,求证:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com