【题目】如图,在多面体
中,
为矩形,
为等腰梯形,
,
,
,且
,平面
平面
,
,
分别为
,
的中点.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)若直线
与平面
所成的角的正弦值为
,求多面体
的体积.
【答案】(Ⅰ)证明见解析;(Ⅱ)
.
【解析】
(Ⅰ)取
的中点
.连接
,
,先证明平面
平面
,然后可证明结论.
(Ⅱ)过
作
,垂直为
,连接
,可得
面平面
,可得
为直线
与平面
所成的角,在直角
中,由射影定理可得
,由
,则
,可求得
,从而求得
,再根据
可求得体积.
解:(Ⅰ)如图,取
的中点
.连接
,
.
![]()
在矩形
中,∵
,
分别为线段
,
的中点,
∴
.
又
平面
,
平面
,
∴
平面
.
在
中,∵
,
分别为线段
,
的中点,
∴
.
又
平面
,
平面
,
∴
平面
.
又
,
平面
,
∴平面
平面
.
又
平面
,
∴
平面
.
(Ⅱ)如图,过
作
,垂直为
,连接
.
![]()
面平面
平面
,且平面
平面
,
平面![]()
所以
面平面
,则
为
在平面
上的射影.
所以
为直线
与平面
所成的角
则
,则![]()
在等腰梯形
中,
,
,则![]()
由
,则有
,
在直角
中,由射影定理有,
,则![]()
在直角
中,
,得![]()
又在直角
中,
,得
,所以![]()
连接
.
∴![]()
![]()
.
科目:高中数学 来源: 题型:
【题目】2020年4月8日零时正式解除离汉通道管控,这标志着封城76天的武汉打开城门了.在疫情防控常态下,武汉市有序复工复产复市,但是仍然不能麻痹大意,仍然要保持警惕,严密防范、慎终如始.为科学合理地做好小区管理工作,结合复工复产复市的实际需要,某小区物业提供了
,
两种小区管理方案,为了了解哪一种方案最为合理有效,物业随机调查了50名男业主和50名女业主,每位业主对
,
两种小区管理方案进行了投票(只能投给一种方案),得到下面的列联表:
|
| |
男业主 | 35 | 15 |
女业主 | 25 | 25 |
(1)分别估计
,
方案获得业主投票的概率;
(2)判断能否有95%的把握认为投票选取管理方案与性别有关.
附:
.
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为加强对销售员的考核与管理,从销售部门随机抽取了2019年度某一销售小组的月均销售额,该小组各组员2019年度的月均销售额(单位:万元)分别为:3.35,3.35,3.38,3.41,3.43,3.44,3.46,3.48,3.51,3.54,3.56,3.56,3.57,3.59,3.60,3.64,3.64,3.67,3.70,3.70.
(Ⅰ)根据公司人力资源部门的要求,若月均销售额超过3.52万元的组员不低于全组人数的
,则对该销售小组给予奖励,否则不予奖励.试判断该公司是否需要对抽取的销售小组发放奖励;
(Ⅱ)从该销售小组月均销售额超过3.60万元的销售员中随机抽取2名组员,求选取的2名组员中至少有1名月均销售额超过3.68万元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年春节期间,某超市准备举办一次有奖促销活动,若顾客一次消费达到400元则可参加一次抽奖活动,超市设计了两种抽奖方案.
方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得60元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.
方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3次.
(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;
(2)若某顾客获得抽奖机会.
①试分别计算他选择两种抽奖方案最终获得返金券的数学期望;
②为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O在水平线MN上,桥AB与MN平行,
为铅垂线(
在AB上).经测量,左侧曲线AO上任一点D到MN的距离
(米)与D到
的距离a(米)之间满足关系式
;右侧曲线BO上任一点F到MN的距离
(米)与F到
的距离b(米)之间满足关系式
.已知点B到
的距离为40米.
![]()
(1)求桥AB的长度;
(2)计划在谷底两侧建造平行于
的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括端点).桥墩EF每米造价k(万元)、桥墩CD每米造价
(万元)(k>0).问
为多少米时,桥墩CD与EF的总造价最低?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,在等腰梯形
中,
,
,
.
,交
于点
.将
沿线段
折起,使得点
在平面
内的投影恰好是点
,如图.
![]()
(1)若点
为棱
上任意一点,证明:平面
平面
.
(2)在棱
上是否存在一点
,使得三棱锥
的体积为
?若存在,确定
点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系内,点A,B的坐标分别为
,
,P是坐标平面内的动点,且直线
,
的斜率之积等于
.设点P的轨迹为C.
(1)求轨迹C的方程;
(2)某同学对轨迹C的性质进行探究后发现:若过点
且倾斜角不为0的直线
与轨迹C相交于M,N两点,则直线
,
的交点Q在一条定直线上.此结论是否正确?若正确,请给予证明,并求出定直线方程;若不正确,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数,
).在以坐标原点为极点、
轴的非负半轴为极轴的极坐标系中,曲线
的极坐标方程为
.
(1)若点
在直线
上,求直线
的极坐标方程;
(2)已知
,若点
在直线
上,点
在曲线
上,且
的最小值为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校数学建模小组为了研究双层玻璃窗户中每层玻璃厚度
(每层玻璃的厚度相同)及两层玻璃间夹空气层厚度
对保温效果的影响,利用热传导定律得到热传导量
满足关系式
,其中玻璃的热传导系数
焦耳/(厘米·度),不流通、干燥空气的热传导系数
焦耳/(厘米·度),
为室内外温度差,
值越小,保温效果越好,现有4种型号的双层玻璃窗户,具体数据如下表:
型号 | 每层玻璃厚度 | 玻璃间夹空气层厚度 |
| 0.4 | 3 |
| 0.3 | 4 |
| 0.5 | 3 |
| 0.4 | 4 |
则保温效果最好的双层玻璃的型号是( )
A.
型B.
型C.
型D.
型
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com