【题目】如图,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.
![]()
(1)求证:DE∥平面A1CB;
(2)求证:A1F⊥BE;
(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.
【答案】(1)详见解析(2)详见解析(3)线段A1B上存在点Q,使得A1C⊥平面DEQ
【解析】
试题分析:(1)D,E分别为AC,AB的中点,易证DE∥平面A1CB;(2)由题意可证DE⊥平面A1DC,从而有DE⊥A1F,又A1F⊥CD,可证A1F⊥平面BCDE,问题解决;(3)取A1C,A1B的中点P,Q,则PQ∥BC,平面DEQ即为平面DEP,由DE⊥平面,P是等腰三角形DA1C底边A1C的中点,可证A1C⊥平面DEP,从而A1C⊥平面DEQ
试题解析:(1)证明:因为D,E分别为AC,AB的中点,
所以DE∥BC.
又因为DE平面A1CB,
所以DE∥平面A1CB.
(2)证明:由已知得AC⊥BC且DE∥BC,
所以DE⊥AC.
所以DE⊥A1D,DE⊥CD.所以DE⊥平面A1DC.
而A1F平面A1DC,所以DE⊥A1F.
又因为A1F⊥CD,
所以A1F⊥平面BCDE.所以A1F⊥BE.
(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:
如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.
又因为DE∥BC,所以DE∥PQ.
所以平面DEQ即为平面DEP.
由(2)知,DE⊥平面A1DC,所以DE⊥A1C.
又因为P是等腰三角形DA1C底边A1C的中点,
所以A1C⊥DP.所以A1C⊥平面DEP.从而A1C⊥平面DEQ.
故线段A1B上存在点Q,使得A1C⊥平面DEQ.
![]()
科目:高中数学 来源: 题型:
【题目】如下图,已知四棱锥
中,底面
为菱形,
平面
,
,
,
分别是
,
的中点.
![]()
(I)证明:
平面
;
(II)取
,在线段
上是否存在点
,使得
与平面
所成最大角的正切值为
,若存在,请求出
点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某飞机失联,经卫星侦查,其最后出现在小岛
附近,现派出四艘搜救船
,为方便联络,船
始终在以小岛
为圆心,100海里为半径的圆上,船
构成正方形编队展开搜索,小岛
在正方形编队外(如图).设小岛
到
的距离为
,
,
船到小岛
的距离为
.
(1)请分别求
关于
的函数关系式
,并分别写出定义域;
(2)当
两艘船之间的距离是多少时搜救范围最大(即
最大)?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
(1)当
时,证明:函数
不是奇函数;
(2)判断函数
的单调性,并利用函数单调性的定义给出证明;
(3)若
是奇函数,且
在
时恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
、
是两条公路(近似看成两条直线),
,在
内有一纪念塔
(大小忽略不计),已知
到直线
、
的距离分别为
、
,
=6千米,
=12千米.现经过纪念塔
修建一条直线型小路,与两条公路
、
分别交于点
、
.
(1)求纪念塔
到两条公路交点
处的距离;
(2)若纪念塔
为小路
的中点,求小路
的长.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,点
也为抛物线
的焦点,过点
的直线
交抛物线
于
两点.
(Ⅰ)若点
满足
,求直线
的方程;
(Ⅱ)
为直线
上任意一点,过点
作
的垂线交椭圆
于
两点,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市
户居民的月平均用电量(单位:度),以
,
,
,
,
,
,
分组的频率分布直方图如图.
![]()
(I)求直方图中
的值;
(II)求月平均用电量的众数和中位数;
(III)在月平均用电量为
,
,
,
的四组用户中,用分层抽样的方法抽取
户居民,则月平均用电量在
的用户中应抽取多少户?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com