【题目】已知圆
的圆心
在
轴的正半轴上,半径为2,且被直线
截得的弦长为
.
(1)求圆
的方程;
(2)设
是直线
上的动点,过点
作圆
的切线
,切点为
,证明:经过
,
,
三点的圆必过定点,并求出所有定点的坐标.
【答案】(1) 圆
:
. (2)证明见解析;
,
.
【解析】
(1)设出圆心坐标,利用点到直线距离公式以及圆的弦长列方程,解方程求得圆心坐标,进而求得圆
的方程.(2)设出
点坐标,根据过圆的切线的几何性质,得到过
,
,
三点的圆是以
为直径的圆.设出圆上任意一点
的坐标,利用
,结合向量数量积的坐标运算进行化简,得到该圆对应的方程
,根据方程过的定点与
无关列方程组,解方程组求得该圆所过定点.
解:(1)设圆心
,
则圆心
到直线
的距离
.
因为圆被直线
截得的弦长为![]()
∴
.
解得
或
(舍),∴圆
:
.
(2)已知
,设
,
∵
为切线,∴
,∴过
,
,
三点的圆是以
为直径的圆.
设圆上任一点为
,则
.
∵
,
,∴![]()
即
.
若过定点,即定点与
无关
令![]()
解得
或
,所以定点为
,
.
科目:高中数学 来源: 题型:
【题目】设F为抛物线C:y2=4x的焦点,过点P(﹣1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将正方形ABCD沿对角线BD折成直二面角A﹣BC﹣C,有如下四个结论:
①AC⊥BD;②△ABC是等边三角形;
③AB与CD所成的角90°;④二面角A﹣BC﹣D的平面角正切值是
;
其中正确结论是 .(写出所有正确结论的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列五个命题:
①函数f(x)=2a2x-1-1的图象过定点(
,-1);
②已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x(x+1),若f(a)=-2则实数a=-1或2.
③若loga
>1,则a的取值范围是(
,1);
④若对于任意x∈R都f(x)=f(4-x)成立,则f(x)图象关于直线x=2对称;
⑤对于函数f(x)=lnx,其定义域内任意x1≠x2都满足f(
)≥![]()
其中所有正确命题的序号是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD中,AB=AD=CD=1,BD=
,BD⊥CD.将四边形ABCD沿对角线BD折成四面体A′﹣BCD,使平面A′BD⊥平面BCD,则下列结论正确的是( ) ![]()
A.A′C⊥BD
B.∠BA′C=90°
C.CA′与平面A′BD所成的角为30°
D.四面体A′﹣BCD的体积为 ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)已知椭圆
过点
,且离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)
为椭圆
的左、右顶点,直线
与
轴交于点
,点
是椭圆
上异于
的动点,直线
分别交直线
于
两点.证明:
恒为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题:
①命题“若a=0,则ab=0”的否命题是“若a=0,则ab≠0”;
②已知命题p:x∈R,x2+x+1<0,则
p:x∈R,x2+x+1≥0;
③若命题“
p”与命题“p或q”都是真命题,则命题q一定是真命题;
④命题“若0<a<1,则loga(a+1)<lo
.
其中正确命题的序号是_____.(把所有正确的命题序号都填上)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com