【题目】已知函数
.
(1)当
时,求
的极值;
(2)当
时,
,求整数
的最大值.
【答案】(1)当
时,
无极值;当
时,
有极小值
,无极大值.(2)1
【解析】
(1)对函数求导得
,再对
分两种情况讨论,即
和
,即可得答案;
(2)当
时,
,即
, 因为
,所以只需
,令
, 利用导数求出
的最小值,可得
,再利用导数研究
的最小值,即可得答案;
(1)当
时,
,所以
,
①当
时,
,
在
为增函数,无极值;
②当
时,由
得
,由
得
;
所以
在
为减函数,在
为增函数.
当
时,
取极小值,
综上,当
时,
无极值;当
时,
有极小值
,无极大值.
(2)当
时,
,将函数看成以
为主元的一次函数,
则只需证
即可,
因为
,所以只需
,令
,
,所以
.
,令
,
,所以
在
递增
,
根据零点存在性定理,
,使得
,即
.
当
时,
,即
,
为减函数,
当
时,
,即
,
为增函数,
所以
,
故
;
在
递增,
,所以
,又
所以整数
的最大值是1.
科目:高中数学 来源: 题型:
【题目】已知直线
,斜率为
的直线
与x轴交于点A,与y轴交于点
,过
作x 轴的平行线,交
于点
,过
作y轴的平行线,交
于点
,再过
作x轴的平行线交
于点
,…,这样依次得线段
、
、
、
、…、
、
,记
为点
的横坐标,则
__________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区城乡居民储蓄存款年底余额(单位:亿元)如图所示,下列判断一定不正确的是( )
![]()
A.城乡居民储蓄存款年底余额逐年增长
B.农村居民的存款年底余额所占比重逐年上升
C.到2019年农村居民存款年底总余额已超过了城镇居民存款年底总余额
D.城镇居民存款年底余额所占的比重逐年下降
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
,过
的直线与抛物线
相交于
两点.
(1)若点
是点
关于坐标原点
的对称点,求
面积的最小值;
(2)是否存在垂直于
轴的直线
,使得
被以
为直径的圆截得的弦长恒为定值?若存在,求出
的方程和定值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
中,三个内角
,
,
所对的边分别是
,
,
.
(1)证明:
;
(2)在①
,②
,③
这三个条件中任选一个补充在下面问题中,并解答
若
,
,________,求
的周长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】红铃虫(Pectinophora gossypiella)是棉花的主要害虫之一,其产卵数与温度有关.现收集到一只红铃虫的产卵数y(个)和温度x(℃)的8组观测数据,制成图1所示的散点图.现用两种模型①
,②
分别进行拟合,由此得到相应的回归方程并进行残差分析,进一步得到图2所示的残差图.
![]()
根据收集到的数据,计算得到如下值:
|
|
|
|
|
|
|
25 | 2.89 | 646 | 168 | 422688 | 48.48 | 70308 |
表中
;
;
;
;
(1)根据残差图,比较模型①、②的拟合效果,应选择哪个模型?并说明理由;
(2)根据(1)中所选择的模型,求出y关于x的回归方程(系数精确到0.01),并求温度为34℃时,产卵数y的预报值.
(参考数据:
,
,
,
)
附:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该市共享单车加强监管,随机选取了50人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这50人根据其满意度评分值(百分制)按照
,
,……
分成5组,根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示),计算
,
,
,
的值分别为( )
![]()
组别 | 分组 | 频数 | 频率 |
第1组 |
| 8 | 0.16 |
第2组 |
|
| ■ |
第3组 |
| 20 | 0.40 |
第4组 |
| ■ | 0.08 |
第5组 |
| 2 |
|
合计 | ■ | ■ |
A.16,0.04,0.032,0.004B.16,0.4,0.032,0.004
C.16,0.04,0.32,0.004D.12,0.04,0.032,0.04
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知椭圆
过点
,
,
是两个焦点.以椭圆
的上顶点
为圆心作半径为
的圆,
(1)求椭圆
的方程;
(2)存在过原点的直线
,与圆
分别交于
,
两点,与椭圆
分别交于
,
两点(点
在线段
上),使得
,求圆
半径
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com