【题目】己知椭圆
过点
,
,
是两个焦点.以椭圆
的上顶点
为圆心作半径为
的圆,
(1)求椭圆
的方程;
(2)存在过原点的直线
,与圆
分别交于
,
两点,与椭圆
分别交于
,
两点(点
在线段
上),使得
,求圆
半径
的取值范围.
科目:高中数学 来源: 题型:
【题目】设
为坐标原点,动点
在圆
上,过
作
轴的垂线,垂足为
,点
满足
.
(1)求点
的轨迹
的方程;
(2)直线
上的点
满足
.过点
作直线
垂直于线段
交
于点
.
(ⅰ)证明:
恒过定点;
(ⅱ)设线段
交
于点
,求四边形
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知椭圆
过点
,
,
是两个焦点.以椭圆
的上顶点
为圆心作半径为
的圆,
(1)求椭圆
的方程;
(2)存在过原点的直线
,与圆
分别交于
,
两点,与椭圆
分别交于
,
两点(点
在线段
上),使得
,求圆
半径
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,
,点
为线段
的中点,点
为线段
上靠近
的三等分点.现沿
进行翻折,得到四棱锥
,如图2,且
.在图2中:
![]()
![]()
(1)求证:
平面
;
(2)求直线
与平面
所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com